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Abstract Cold-water corals (CWCs) are key ecosystem

engineers in deep-sea benthic communities around the

world. Their distribution patterns are related to several

abiotic and biotic factors, of which seawater temperature is

arguably one of the most important due to its role in coral

physiological processes. The CWC Dendrophyllia corni-

gera has the particular ability to thrive in several locations

in which temperatures range from 11 to 17 �C, but to be

apparently absent from most CWC reefs at temperatures

constantly below 11 �C. This study thus aimed to assess the

thermal tolerance of this CWC species, collected in the

Mediterranean Sea at 12 �C, and grown at the three rele-

vant temperatures of 8, 12, and 16 �C. This species dis-

played thermal tolerance to the large range of seawater

temperatures investigated, but growth, calcification, respi-

ration, and total organic carbon (TOC) fluxes severely

decreased at 8 �C compared to the in situ temperature of

12 �C. Conversely, no significant differences in calcifica-

tion, respiration, and TOC fluxes were observed between

corals maintained at 12 and 16 �C, suggesting that the

fitness of this CWC is higher in temperate rather than cold

environments. The capacity to maintain physiological

functions between 12 and 16 �C allows D. cornigera to be

the most abundant CWC species in deep-sea ecosystems

where temperatures are too warm for other CWC species

(e.g., Canary Islands). This study also shows that not all

CWC species occurring in the Mediterranean Sea (at deep-

water temperatures of 12–14 �C) are currently living at

their upper thermal tolerance limit.

Keywords Physiological ecology � Thermal tolerance �
Coral calcification � Coral growth � Coral respiration �
Organic carbon fluxes

Introduction

Cold-water corals (CWCs) are among the main engineering

species (sensu Jones et al. 1994) in deep-sea ecosystems all

over the world (Freiwald et al. 2004; Roberts et al. 2006,

2009a), where they play a crucial structural and functional

role (Wildish and Kristmanson 1997; Gili and Coma 1998).

From a structural point of view, many CWC species gen-

erate spatial heterogeneity by forming complex three-

dimensional reef frameworks that provide suitable habitat

for hundreds of associated species (Krieger and Wing

2002; Roberts et al. 2009a; Buhl-Mortensen et al. 2010).

The main environmental features, such as current flow,

food availability, and sediment re-suspension, vary widely

within these complex structures, and this heterogeneity

increases the abundance and functional diversity of the

associated fauna (Fosså et al. 2002; Henry and Roberts
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2007), particularly fish species (Baillon et al. 2012; Miller

et al. 2012). From a functional point of view, CWCs

determine a significant flow of matter and energy from the

pelagic to the benthic system (Gili and Coma 1998; Van

Oevelen et al. 2009), by capturing plankton and particulate

organic matter suspended in the water (Duineveld et al.

2004, 2007, 2012; Carlier et al. 2009; Dodds et al. 2009).

Dissolved and particulate organic mucoid compounds

synthesized by CWCs and released into the water as an end

product of catabolism can act as a vector for energy and a

matter carrier in benthic–pelagic coupling, stimulating

bacterioplankton growth and enhancing nutrient recycling

via the microbial loop (Ferrier-Pages et al. 2000; Wild

et al. 2004, 2008, 2009; Naumann et al. 2010).

The distribution of CWC species has been related to

several abiotic and biotic factors such as seawater tem-

perature and density, water flow regimes, aragonite satu-

ration state, oxygen concentration, presence of suitable

substrate, and food supply (Roberts et al. 2006; Davies

et al. 2008; Dullo et al. 2008). Seawater temperature is

considered one of the most important ecological factors

driving CWC distribution (Freiwald et al. 2009; Roberts

et al. 2009a) because it strongly controls coral physiolog-

ical processes such as respiration (Buddemeier and Kinzie

1976; Coles and Jokiel 1977; Dodds et al. 2007; Naumann

et al. 2014) and calcification (Clausen and Roth 1975;

Howe and Marshall 2002; Naumann et al. 2014). Above or

below their optimum thermal range, corals reduce their

polyp activity (i.e., polyp expansion) and metabolism

(Howe and Marshall 2001; Previati et al. 2010; Ferrier-

Pagès et al. 2012), before the appearance of lethal effects

(Jokiel and Coles 1977; Coles and Fadlallah 1991; Ro-

dolfo-Metalpa et al. 2006).

Among cold-water scleractinians, some species such as

Lophelia pertusa, Madrepora oculata, Solenosmilia vari-

abilis, and Desmophyllum dianthus show a widespread

distribution throughout the world’s oceans. Conversely,

other CWC species like Dendrophyllia cornigera (Fig. 1)

are restricted to particular geographical areas (Zibrowius

1980; Cairns 1994; Roberts et al. 2009a). The currently

known distribution of D. cornigera (Fig. 2; Electronic

Supplementary Material, ESM Table 1) includes the

Mediterranean Sea at temperatures *12 to 14 �C (Pérès

and Picard 1964; Zibrowius 1980; Freiwald et al. 2009;

Orejas et al. 2009; Salomidi et al. 2010; Bo et al. 2011;

Gori et al. 2013), and the Eastern Atlantic from the south of

Ireland to the Cape Verde Islands (Le Danois 1948; Zi-

browius 1980; Álvarez-Claudio 1994; Brito and Ocaña

2004; Sánchez et al. 2009; Braga-Henriques et al. 2013), at

temperatures ranging from 11 to 17 �C (Le Danois 1948;

Barton et al. 1998; Castaing et al. 1999; Valencia et al.

2004). In the Bay of Biscay, D. cornigera locally forms

dense mono-specific aggregations between 50 and 620 m

depth (Le Danois 1948; Álvarez-Claudio 1994; Reveillaud

et al. 2008; Sánchez et al. 2009), and occurs at shallower

depths of 30 m in areas characterized by upwelling of sea

water at 11–14 �C (Castric-Fey 1996). Around the Canary

Islands, D. cornigera is the dominant CWC species

between 200 and 400 m depth (Brito and Ocaña 2004), at

temperatures ranging from 13 to 16 �C (Barton et al. 1998).

However, D. cornigera is absent from the north-eastern

Atlantic, where temperatures range from 5 to 10 �C and

reefs are dominated by L. pertusa (Dullo et al. 2008;

Roberts et al. 2009b; Huvenne et al. 2011; Purser et al.

2013). All these observations suggest that, unlike other

Fig. 1 The cold-water coral Dendrophyllia cornigera. Photo by PJ

López-González

Fig. 2 Known distribution of Dendrophyllia cornigera based on a

literature review of the confirmed identifications of live specimens

(quoted in the text)
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CWC species, the fitness of D. cornigera may be higher in

temperate rather than cold environments.

To assess the potential effects of seawater temperature

on the physiology of D. cornigera, rates of growth, calci-

fication, respiration, and organic carbon (C) fluxes were

measured at two temperatures (12 and 16 �C) near the

extremes of its current thermal range, and at a lower

temperature (8 �C) that is characteristic of the north-east-

ern Atlantic CWC reefs (Dullo et al. 2008; Roberts et al.

2009b) where D. cornigera is absent. The aim of this study

was to increase our knowledge on the thermal tolerance of

D. cornigera, as temperature may be a key driver of its

distribution.

Materials and methods

Coral collection and maintenance

Specimens of D. cornigera (Lamarck, 1816) (Fig. 1) were

collected in the Menorca Channel (Balearic Archipelago,

western Mediterranean Sea, 40�0000000N; 003�3202000E, at

180–330 m depth) by means of the manned submersible

JAGO (IFM-GEOMAR, Kiel, Germany), and maintained

alive on board the RV ‘Garcı́a del Cid’ during the cruise

INDEMARES 3 (April 2010). Corals were transported to

the Institut de Ciències del Mar (CSIC; Barcelona, Spain)

and maintained there in a 140-L tank with a continuous

flow of Mediterranean sea water pumped from 15 m depth

at a rate of 60 L h-1 and filtered by a 50-lm sand filter

(Olariaga et al. 2009). Water temperature was maintained

close to in situ conditions (12 ± 1.0 �C), and two sub-

mersible pumps provided continuous water movement in

the tank with a flow rate of 3,200 L h-1. Corals were fed

five times a week with frozen Mysis (Crustacea, Eumala-

costraca) and Artemia salina (Crustacea, Sarsostraca)

adults. For the development of the experimental work, 15

specimens of D. cornigera were transferred to the Centre

Scientifique de Monaco (CSM; Monaco, Principality of

Monaco) and maintained during a month at the same

temperature as in Barcelona (12 ± 1.0 �C) in order to

allow the specimens to acclimate. Corals were then placed

into three different 25-L darkened tanks (five nubbins per

tank) with a continuous flow of Mediterranean sea water

freshly pumped from 50 m depth at a rate of 20 L h-1.

Water temperature was maintained in each tank at

12 ± 0.5 �C by means of chillers (Teco TR 20, Ravenna,

Italy) and 300-W heaters (Aquarium Systems Visi-therm,

Sarrebourg, France) connected to independent temperature

controllers (West 6100, Kassel, Germany). A submersible

pump provided continuous water movement in each tank

with a flow rate of 320 L h-1. Nubbins were distributed in

order to have approximately the same skeletal mass and

polyp number in each tank (Table 1) to ensure comparable

magnitudes of growth and calcification rates. After one

week under the above-controlled conditions, seawater

temperature in two of the three tanks was changed stepwise

(0.5 �C d-1) to reach the three experimental temperatures

of 8 ± 0.5, 12 ± 0.5, and 16 ± 0.5 �C. Corals were fed

five times a week with a controlled daily supply of four

Mysis per polyp and were maintained for 150 d under these

conditions. Mysis were pipetted two to three times a day

onto protruded polyps, and subsequent capture and inges-

tion were visually monitored to ensure food intake. To

determine daily organic C supply, 12 Mysis were freeze-

dried (Christ Alpha 2-4 LD, Osterode am Harz, Germany),

acidified with H3PO4 (1 mol L-1, 100 lL), and subse-

quently analysed using an elemental analyzer (Perkin

Elmer, Waltham, MA, USA). Mean daily food-derived

organic C input (184 ± 16 lmol C polyp-1 d-1) was

calculated using certified glycine standards (K-factor

32.0 % C; Naumann et al. 2011).

Physiological measurements

After 10-d incubation at the right temperatures, the weight

of each coral nubbin was assessed by means of the buoyant

weight technique (Jokiel et al. 1978; Davies 1989) using an

analytical balance (Mettler AT 261, L’Hospitalet de

Llobregat, Spain, precision 0.1 mg). During the following

Table 1 Weight, surface, and number of polyps of the Dendrophyllia

cornigera nubbins incubated under the three experimental

temperatures

Treatment

(�C)

Weight (g) Surface

area (cm2)

Number

of polyps

8 15.8 34.4 2

12.4 31.9 1

9.4 23.7 2

6.6 19.0 2

2.1 8.7 1

9.3 ± 5.3 23.5 ± 10.4

12 20.5 34.6 1

10.6 22.2 2

10.2 18.4 1

8.6 21.3 2

2.0 8.2 1

10.4 ± 6.6 20.9 ± 9.4

16 15.3 28.2 2

15.0 32.3 2

9.8 32.4 2

6.2 18.2 1

3.3 12.9 1

9.9 ± 5.3 24.8 ± 8.8
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150 d, the weight of each nubbin was measured eight times

(approximately every 20 d). Feeding was suspended 48 h

before weight measurements to rule out excretion of

undigested particulate food items. The bulk growth rate

(i.e., skeletal ? tissue) of each nubbin was calculated as

the slope of the linear regression between the natural log-

arithm of the nubbin biomass (mg) versus the experimental

time (d). Bulk growth rates were expressed as percentages

of daily weight increase (% d-1) (Orejas et al. 2011a). The

known percentage contribution of organic tissue biomass to

bulk dry mass (14 ± 4 %; Movilla et al. 2014) allowed

estimation of organic C flux into tissue growth (Naumann

et al. 2011), assuming a comparable tissue ash-free dry

weight organic C content, as previously reported for scle-

ractinian corals and marine benthic macrofauna (41 and

40 %, respectively; Kang 1999; Schutter et al. 2010).

After 150 d under the three temperature conditions,

three sets of incubations were performed to assess the rates

of calcification, respiration, and organic C fluxes. Five

nubbins per treatment were incubated for 6 h in individual

beakers (370 mL), completely filled (without any air space)

with 50 lm pre-filtered sea water, hermetically closed with

a plastic membrane impermeable to air, and maintained at

the corresponding temperature in a water bath. One beaker,

filled with pre-filtered sea water without any coral, was

used as a control. Constant water movement inside the

beakers was ensured by a Teflon-coated magnetic stirrer.

The coral calcification rate was assessed by the total

alkalinity (TA) anomaly technique (Smith and Key 1975;

Langdon et al. 2010), assuming a consumption of two

moles of alkalinity for every mole of calcium carbonate

produced (Langdon et al. 2010). Seawater samples

(120 mL) were drawn, before and after incubation, from

each beaker, sterile-filtered (0.2 lm), and kept refrigerated

(4 �C) pending analysis (performed within less than 48 h).

TA was determined on six subsamples of 20 mL from each

beaker using a titration system composed of a 20-mL open

thermostated titration cell, a pH electrode calibrated on the

National Bureau of Standards scale, and a computer-driven

titrator (Metrohm 888 Titrando, Riverview, FL, USA).

Seawater samples were kept at a constant temperature

(25.0 ± 0.2 �C) and weighed (Mettler AT 261, L’Hospi-

talet de Llobregat, Spain, precision 0.1 mg) before the

titration to determine their exact volume from temperature

and salinity. TA was calculated from the Gran function

applied to pH variations from 4.2 to 3.0 as the function of

added volume of HCl (0.1 mol L-1), and TA values were

corrected for changes in ammonium concentration (result-

ing from metabolic waste products) in experimental and

control beakers (Jacques and Pilson 1980; Naumann et al.

2011). Samples for ammonium analysis (20 mL) were

sterile-filtered (0.2 lm) and kept frozen (-20 �C) until

ammonium concentration was determined in four replicates

per sample by means of the spectrofluorometric method of

Holmes et al. (1999). Variation in the TA measured from

the control beaker was subtracted from those measured in

the beakers with corals, and calcification rates were derived

from the recorded depletion of TA over the 6-h incubation.

Respiration rates were assessed by determining oxygen

concentration in each beaker, at the beginning and end of

the incubation, using an optode sensor (Hach-Lange HQ

40b, Loveland, CO, USA, precision 0.2 mg L-1). Varia-

tion in the oxygen concentration measured from the control

beaker was subtracted from those measured in the coral

beakers, and respiration rates were derived from the

recorded depletion of dissolved oxygen over the incuba-

tion. Oxygen consumption rates were converted to C

equivalents (lmol) according to the equation C

respired = O2 consumed � RQ, where RQ is a coral-spe-

cific respiratory quotient equal to 0.8 mol C mol-1 O2

(Anthony and Fabricius 2000; Ribes et al. 2003; Naumann

et al. 2011). Organic C fluxes were assessed by calculating

the difference in the seawater total organic carbon (TOC)

concentration between the beginning and end of the incu-

bation (Naumann et al. 2011). Seawater samples (60 mL)

were drawn, before and after incubation, from each beaker,

transferred into pre-combusted (450 �C, 5 h) glass vials,

acidified with phosphoric acid (20 %, 250 lL) to pH \ 2,

and kept frozen (-20 �C) until analysis by high-tempera-

ture catalytic oxidation (Shimadzu TOC-VCPH, Kyoto,

Japan). Variation in the TOC measured from the control

beaker was subtracted from those measured in the coral

beakers, and TOC net fluxes were derived from the

recorded variation of TOC over the 6-h incubation. Results

from calcification, respiration, and organic C flux mea-

surements were normalized to the coral skeletal surface

area (fully covered by coral tissue), in order to allow for

comparison with other coral species. The skeletal surface

area (S) of each coral nubbin was determined by means of

advanced geometry (Naumann et al. 2009) according to the

equation S = p � (r ? R) � a ? p � R2, where r and

R represent the basal and apical radius of each polyp,

respectively, and a is the apothem measured with calipers

(Rodolfo-Metalpa et al. 2006).

Statistical analyses

All results are expressed as mean ± standard deviation.

Normal distribution of the data was tested by means of

Kolmogorov–Smirnov test performed with the R-language

function ks.test of the R software platform (R Development

Core Team 2012). Homogeneity of variances was tested by

means of the Bartlett test performed with the R-language

function bartlett.test. Differences among the three experi-

mental temperatures in bulk growth rate, calcification, res-

piration, and organic C fluxes were tested by one-way
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ANOVA and subsequent post hoc analysis performed with

the R-language function aov and tukeyHSD, respectively.

Results

Significant differences in bulk growth rate assessed by means

of the buoyant weight technique (Fig. 3) were observed

among the three temperatures (ANOVA, F = 21.69, p value

\0.001; Table 2). Corals maintained at 8 �C grew signifi-

cantly slower (0.019 ± 0.012 % d-1) than those maintained

at 12 �C (0.061 ± 0.020 % d-1), which also grew signifi-

cantly slower than those maintained at 16 �C

(0.116 ± 0.040 % d-1). Changes in TA in the incubation

chambers (1.9–18.6 lEq L-1 h-1) were always distin-

guishable from changes measured in the control chambers

(\1.7 lEq L-1 h-1), and calcification rates assessed by the

TA anomaly technique (Fig. 4a) were significantly different

among the experimental temperatures (ANOVA,

F = 12.11, p value = 0.001; Table 2). Corals maintained at

8 �C calcified slower (0.4 ± 0.2 lmol CaCO3 cm-2 d-1)

than those maintained at 12 �C (1.5 ± 0.6 lmol CaCO3 -

cm-2 d-1) or 16 �C (1.9 ± 0.6 lmol CaCO3 cm-2 d-1).

Oxygen depletion attributable to coral respiration in the

incubation chambers (2.5–11.6 lmol L-1 h-1) was always

higher than oxygen depletion in control chambers due to

microbial respiration (\1.2 lmol L-1 h-1), and respiration

rates (Fig. 4b) were significantly different among the tested

temperatures (ANOVA, F = 10.47, p value = 0.002;

Table 2). Corals maintained at 8 �C respired significantly

less (1.4 ± 0.3 lmol C cm-2 d-1) than those maintained at

12 �C (2.0 ± 0.3 lmol C cm-2 d-1) or 16 �C

(2.4 ± 0.5 lmol C cm-2 d-1). TOC fluxes (Fig. 4c) were

significantly different among the three temperatures treat-

ments (ANOVA, F = 20.92, p value\0.001; Table 2), with

a net uptake of TOC observed in corals maintained at 8 �C

(-0.56 ± 0.15 lmol TOC cm-2 d-1), which contrasted

with the substantial release of TOC observed in corals

maintained both at 12 �C (0.88 ± 0.34 lmol TOC

cm-2 d-1) and 16 �C (0.87 ± 0.59 lmol TOC cm-2 d-1).

Concerning the C budget of D. cornigera at the three

temperatures, feeding accounted for a mean organic C

input of 184 ± 16 lmol C polyp-1 d-1 corresponding to

13 ± 4 lmol C cm-2 d-1. Respiration accounted for the

main consumption of this organic C input and increased

with temperature (11, 17, and 20 % at 8, 12, and 16 �C,

respectively). Tissue growth also increased with tempera-

ture and accounted for 4, 12, and 16 % at 8, 12, and 16 �C,

respectively. It has to be noticed that at 8 �C, seawater

TOC contributed to the input of organic C, in addition to

the particulate feeding (4 % of the total organic C input),

whereas at 12 and 16 �C, the release of TOC (9 and 7 % of

the organic C input at 12 and 16 �C, respectively) repre-

sented an additional loss of C from the coral.

Discussion

Dendrophyllia cornigera exhibited, in laboratory condi-

tions, a pronounced tolerance to a wide thermal range

(from 8 to 16 �C). It has been previously demonstrated that

lethal effects appear in corals at temperatures outside the

species thermal range (Coles and Fadlallah 1991; Colella

et al. 2012), with polyp contraction followed by massive

loss of tissue (Jokiel and Coles 1977; Rodolfo-Metalpa

et al. 2006). Such mortality was observed in L. pertusa

when maintained for a week at 15 �C or at higher tem-

peratures (Brooke et al. 2013). Conversely, no damage or

coral mortality was observed in D. cornigera during our

experiment (5 months) and until the present day (after

24 months), confirming that the upper thermal threshold of
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Fig. 3 Growth rate of Dendrophyllia cornigera under the three

experimental temperatures, as a result of eight weight measurements

carried out during 150 d (approximately every 20 d). Values are

presented as mean ± SD

Table 2 Pairwise test for comparison of the growth rate, calcifica-

tion, respiration, and organic carbon fluxes, among the three experi-

mental temperatures

8/12 �C

(p value)

8/16 �C

(p value)

12/16 �C

(p value)

Growth 0.037* \0.001*** 0.007**

Calcification \0.001*** 0.001** 0.505

Respiration 0.048* 0.002** 0.192

Organic carbon fluxes \0.001*** \0.001*** 0.999

* p value \0.05, ** p value \0.01, *** p value \0.001
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some CWC species may be higher than previously assumed

(Naumann et al. 2013).

Dendrophyllia cornigera demonstrated no thermal

acclimation to low temperatures, suggesting that the fitness

of this CWC is higher in temperate rather than cold-water

environments. Indeed, its metabolism was severely

decreased at 8 �C compared to the in situ temperature of

12 �C, with a significant reduction in growth rate by

300 %, calcification rate by 70 %, and respiration rate by

30 %. The observed shift from release to uptake of TOC at

8 �C also supports this substantial reduction in coral

metabolism at this low temperature, since organic matter

release by corals in ambient sea water depends on their

metabolic activity (Ferrier-Pagès et al. 1998; Wild et al.

2008; Naumann et al. 2011). Such a reduction in metabo-

lism was previously observed in tropical coral species

when seawater temperature fell below their natural thermal

range (Coles and Fadlallah 1991; Kemp et al. 2011). Cal-

cification rates of tropical (e.g., Jokiel and Coles 1977;

Coles and Jokiel 1978; Lough and Barnes 2000; Abra-

movitch-Gottlib et al. 2002) and temperate corals (e.g.,

Jacques et al. 1983; Howe and Marshall 2002; Rodolfo-

Metalpa et al. 2008a) are strongly influenced by tempera-

ture, and a growth response to temperature has been pre-

viously observed also in the CWC Oculina varicosa (Reed

1981). Low growth rates could be directly induced by the

effect of temperature on the activity of the enzymes

involved in calcification (such as the carbonic anhydrases;

Ip et al. 1991; Al-Horani et al. 2003; Allemand et al. 2004),

since enzyme activity is maximal within the thermal range

of the organism and decreases otherwise (Jacques et al.

1983; Marshall and Clode 2004; Al-Horani 2005). More-

over, a possible reduced digestion and/or assimilation

efficiency at low temperature (Glynn and Stewart 1973)

could also have resulted in a lower organic C availability

for corals maintained at 8 �C, even if the amount of

ingested organic C was the same for all corals (see Mate-

rials and Methods). This is also suggested by the observed

decrease in the amount of C employed for tissue growth,

respiration, and organic C fluxes at 8 �C (*19 % of the

ingested organic C), compared to 12 �C (*38 %) and

16 �C (*43 %). No significant differences in the rates of

calcification, respiration, and TOC release were observed

between corals maintained at 12 and 16 �C, suggesting that

D. cornigera can tightly control its metabolic activity

within its natural thermal range (Sassaman and Mangum

1970; Jacques et al. 1983; Howe and Marshall 2001). Such

a thermal acclimation was previously observed in L. per-

tusa colonies from the Mediterranean Sea, which kept

respiration rates constant between 6 and 12 �C, and calci-

fication rates constant between 9 and 12 �C (Naumann

et al. 2014), as well as in the temperate coral Leptosammia

pruvoti, whose calcification rate was not correlated with

seawater temperature (Caroselli et al. 2012). Although the

calcification rate assessed by the TA anomaly technique

was not significantly different between 12 and 16 �C, the

enhanced growth rates at 16 �C shown by the buoyant

weight measures is in agreement with the observed higher

tissue growth at 16 �C and highlights that D. cornigera

metabolism is more efficient at the higher temperature

within its thermal range.
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Fig. 4 Calcification rate (a), respiration rate (b), and total organic

carbon (TOC) net flux (c) of Dendrophyllia cornigera under the three

experimental temperatures, as the result of coral nubbins incubation in

individual beakers for 6 h. Values are presented as mean ± SD

normalised to coral skeletal surface area
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Growth, calcification, and respiration rates of D. cornigera

at the in situ Mediterranean temperature of 12 �C are con-

sistent with previous data obtained from the same species

(Orejas et al. 2011a; Naumann et al. 2013) and are in the same

order of magnitude as those reported for other Mediterranean

CWCs L. pertusa, M. oculata (e.g., Maier et al. 2009, 2012;

Orejas et al. 2011a, 2011b; Naumann et al. 2014), and D.

dianthus (Naumann et al. 2011, 2013). Overall, Mediterra-

nean CWCs have a reduced metabolic activity (Naumann

et al. 2011) and lower calcification rates compared to most

tropical corals (13.9–194.0 lmol CaCO3 cm-2 d-1; Lough

and Barnes 2000; Carricart-Garnivet 2004; Colombo-Pallotta

et al. 2010), but have comparable rates to most temperate

coral species (1.5–3.12 lmol CaCO3 cm-2 d-1; Kevin and

Hudson 1979; Jacques et al. 1983; Howe and Marshall 2002;

Rodolfo-Metalpa et al. 2008b). Organic C release at the in situ

temperature of 12 �C was higher in Dendrophyllia cornigera

(0.88 ± 0.34 lmol C cm-2 d-1) than in Desmophyllum

dianthus (*0.4 lmol C cm-2 d-1, Naumann et al. 2011),

which highlights its functional role as a source of particulate

and/or dissolved organic matter that can stimulate bacterio-

plankton growth and enhance nutrient recycling via the

microbial loop (Ferrier-Pagès et al. 1998; Wild et al. 2008,

2009). However, both species release much less organic

matter than L. pertusa (*9.6 lmol C cm-2 d-1; Wild et al.

2008). The bulk of organic matter released by corals mainly

originates from coral mucus (Crossland 1987; Wild et al.

2004; Naumann et al. 2010), which may play an important

role in the entanglement and capture of small food particles

(Lewis and Price 1975). This may suggest a possible low

importance of mucus production in the trophic strategy of

Dendrophyllia cornigera and Desmophyllum dianthus, pos-

sibly due to a preference of these species for large prey cap-

tured by means of tentacle activity (Lewis and Price 1975) of

their large polyps.

The severe reduction observed in the rates of the main

physiological processes at 8 �C may explain why D.

cornigera is currently absent from areas dominated by

other CWC species and characterized by temperatures

constantly below 12 �C (e.g., Norwegian reefs, Tisler reef,

Mingulay reef; Dullo et al. 2008; Roberts et al. 2009b;

Huvenne et al. 2011). However, its capacity to maintain

efficient physiological function between 12 and 16 �C

enables D. cornigera to be the most abundant CWC species

in deep-sea ecosystems where temperature conditions are

currently not suitable for the otherwise more widespread

CWCs L. pertusa and M. oculata (e.g., Canary Islands;

Brito and Ocaña 2004). The thermal tolerance of D.

cornigera also highlights that not all CWC species dwell-

ing on the continental shelf and slope of the Mediterranean

Sea (at temperatures of 12–14 �C) are currently living at

their upper thermal limit (Freiwald et al. 2009; Brooke

et al. 2013). Large-scale warming of the Mediterranean Sea

(Walther et al. 2002) and its deep waters (*0.12 �C in

30 yr in the Western basin; Bethoux et al. 1990) may

therefore contribute to a future shift in the Mediterranean

CWC community composition, with a potential reduction

in L. pertusa abundance (whose upper limit of thermal

tolerance is near 15 �C; Brooke et al. 2013), and an

increase in D. cornigera abundance.
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E/000732), and HERMIONE (Grant Agreement Number 226354).

References

Abramovitch-Gottlib L, Katoshevski D, Vago R (2002) A comput-

erized tank system for studying the effect of temperature on

calcification of reef organisms. J Biochem Biophys Methods

50:245–252

Al-Horani FA (2005) Effects of changing seawater temperature on

photosynthesis and calcification in the scleractinian coral

Galaxea fascicularis, measured with O2, Ca2? and pH micro-

sensors. Sci Mar 69:347–354

Al-Horani FA, Al-Moghrabi SM, De Beer D (2003) The mechanism

of calcification and its relation to photosynthesis and respiration

in the scleractinian coral Galaxea fascicularis. Mar Biol

142:419–426

Allemand D, Ferrier-Pagès C, Furla P, Houlbrèque F, Puverel S,
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Ocaña O, Santos RS (2013) Diversity, distribution and spatial

structure of the cold-water coral fauna of the Azores (NE

Atlantic). Biogeosciences 10:4009–4036

Brito A, Ocaña O (2004) Corales de las islas Canarias. Antozoos con

esqueleto de los fondos litorales y profundos. Francisco Lemus

Editor, La Laguna

Brooke S, Ross SW, Bane JM, Seim HE, Young CM (2013)

Temperature tolerance of the deep-sea coral Lophelia pertusa

from the southeastern United States. Deep Sea Res Pt 2 Top Stud

Oceanogr 92:240–248

Buddemeier RW, Kinzie RA (1976) Coral growth. Oceanogr Mar

Biol Annu Rev 14:183–225

Buhl-Mortensen LA, Vanreusel AJ, Gooday LA, Levin I, Priede G,

Buhl-Mortensen P, Gheerardyn H, King NJ, Raes M (2010)

Biological structures as a source of habitat heterogeneity and

biodiversity on the deep ocean margins. Mar Ecol 31:21–50

Cairns SD (1994) Scleractinia of the temperate north Pacific.

Smithsonian Institution Press, Washington, DC, pp 1–150

Carlier A, Le Guilloux E, Olu K, Sarrazin J, Mastrototaro F, Taviani

M, Clavier J (2009) Trophic relationships in a deep Mediterra-

nean cold-water coral bank (Santa Maria di Leuca, Ionian Sea).

Mar Ecol Prog Ser 397:125–137

Caroselli E, Zaccanti F, Mattioli G, Falini G, Levy O, Dubinsky Z,

Goffredo S (2012) Growth and demography of the solitary

scleractinian coral Leptopsammia pruvoti along a sea surface

temperature gradient in the Mediterranean Sea. PLoS One

76:e37848

Carricart-Garnivet JP (2004) Sea surface temperature and the growth

of the West Atlantic reef building coral Montastrea annularis.

J Exp Mar Biol Ecol 302:249–260

Castaing P, Froidefond JM, Lazure P, Weber O, Prud’homme R,

Jouanneau JM (1999) Relationship between hydrology and

seasonal distribution of suspended sediments on the continental

shelf of the Bay of Biscay. Deep-Sea Res Part 2 Top Stud

Oceanogr 46:1979–2001
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