32 research outputs found

    Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma

    Full text link
    PURPOSE We sought to investigate clinical outcomes of relapsed medulloblastoma and to compare molecular features between patient-matched diagnostic and relapsed tumors. METHODS Children and infants enrolled on either SJMB03 (NCT00085202) or SJYC07 (NCT00602667) trials who experienced medulloblastoma relapse were analyzed for clinical outcomes, including anatomic and temporal patterns of relapse and postrelapse survival. A largely independent, paired molecular cohort was analyzed by DNA methylation array and next-generation sequencing. RESULTS A total of 72 of 329 (22%) SJMB03 and 52 of 79 (66%) SJYC07 patients experienced relapse with significant representation of Group 3 and wingless tumors. Although most patients exhibited some distal disease (79%), 38% of patients with sonic hedgehog tumors experienced isolated local relapse. Time to relapse and postrelapse survival varied by molecular subgroup with longer latencies for patients with Group 4 tumors. Postrelapse radiation therapy among previously nonirradiated SJYC07 patients was associated with long-term survival. Reirradiation was only temporizing for SJMB03 patients. Among 127 patients with patient-matched tumor pairs, 9 (7%) experienced subsequent nonmedulloblastoma CNS malignancies. Subgroup (96%) and subtype (80%) stabilities were largely maintained among the remainder. Rare subgroup divergence was observed from Group 4 to Group 3 tumors, which is coincident with genetic alterations involving MYC, MYCN, and FBXW7. Subgroup-specific patterns of alteration were identified for driver genes and chromosome arms. CONCLUSION Clinical behavior of relapsed medulloblastoma must be contextualized in terms of up-front therapies and molecular classifications. Group 4 tumors exhibit slower biological progression. Utility of radiation at relapse is dependent on patient age and prior treatments. Degree and patterns of molecular conservation at relapse vary by subgroup. Relapse tissue enables verification of molecular targets and identification of occult secondary malignancies

    Clinical outcomes and patient-matched molecular composition of relapsed medulloblastoma

    Get PDF
    © 2021 by American Society of Clinical Oncology. Creative Commons Attribution Non-Commercial No Derivatives 4.0 License: https://creativecommons.org/licenses/by-nc-nd/4.0/Purpose: We sought to investigate clinical outcomes of relapsed medulloblastoma and to compare molecular features between patient-matched diagnostic and relapsed tumors. Methods: Children and infants enrolled on either SJMB03 (NCT00085202) or SJYC07 (NCT00602667) trials who experienced medulloblastoma relapse were analyzed for clinical outcomes, including anatomic and temporal patterns of relapse and postrelapse survival. A largely independent, paired molecular cohort was analyzed by DNA methylation array and next-generation sequencing. Results: A total of 72 of 329 (22%) SJMB03 and 52 of 79 (66%) SJYC07 patients experienced relapse with significant representation of Group 3 and wingless tumors. Although most patients exhibited some distal disease (79%), 38% of patients with sonic hedgehog tumors experienced isolated local relapse. Time to relapse and postrelapse survival varied by molecular subgroup with longer latencies for patients with Group 4 tumors. Postrelapse radiation therapy among previously nonirradiated SJYC07 patients was associated with long-term survival. Reirradiation was only temporizing for SJMB03 patients. Among 127 patients with patient-matched tumor pairs, 9 (7%) experienced subsequent nonmedulloblastoma CNS malignancies. Subgroup (96%) and subtype (80%) stabilities were largely maintained among the remainder. Rare subgroup divergence was observed from Group 4 to Group 3 tumors, which is coincident with genetic alterations involving MYC, MYCN, and FBXW7. Subgroup-specific patterns of alteration were identified for driver genes and chromosome arms. Conclusion: Clinical behavior of relapsed medulloblastoma must be contextualized in terms of up-front therapies and molecular classifications. Group 4 tumors exhibit slower biological progression. Utility of radiation at relapse is dependent on patient age and prior treatments. Degree and patterns of molecular conservation at relapse vary by subgroup. Relapse tissue enables verification of molecular targets and identification of occult secondary malignancies.info:eu-repo/semantics/publishedVersio

    Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort.

    Get PDF
    BACKGROUND: Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. METHODS: In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. FINDINGS: We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53 105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40-69) and 5-year overall survival was 65% (95% CI 52-81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. INTERPRETATION: Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. FUNDING: German Cancer Aid; German Federal Ministry of Education and Research; German Childhood Cancer Foundation (Deutsche Kinderkrebsstiftung); European Research Council; National Institutes of Health; Canadian Institutes for Health Research; German Cancer Research Center; St Jude Comprehensive Cancer Center; American Lebanese Syrian Associated Charities; Swiss National Science Foundation; European Molecular Biology Organization; Cancer Research UK; Hertie Foundation; Alexander and Margaret Stewart Trust; V Foundation for Cancer Research; Sontag Foundation; Musicians Against Childhood Cancer; BC Cancer Foundation; Swedish Council for Health, Working Life and Welfare; Swedish Research Council; Swedish Cancer Society; the Swedish Radiation Protection Authority; Danish Strategic Research Council; Swiss Federal Office of Public Health; Swiss Research Foundation on Mobile Communication; Masaryk University; Ministry of Health of the Czech Republic; Research Council of Norway; Genome Canada; Genome BC; Terry Fox Research Institute; Ontario Institute for Cancer Research; Pediatric Oncology Group of Ontario; The Family of Kathleen Lorette and the Clark H Smith Brain Tumour Centre; Montreal Children's Hospital Foundation; The Hospital for Sick Children: Sonia and Arthur Labatt Brain Tumour Research Centre, Chief of Research Fund, Cancer Genetics Program, Garron Family Cancer Centre, MDT's Garron Family Endowment; BC Childhood Cancer Parents Association; Cure Search Foundation; Pediatric Brain Tumor Foundation; Brainchild; and the Government of Ontario

    Structures of the human poly (ADP-ribose) glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives.

    Get PDF
    Poly(ADP-ribose) glycohydrolase (PARG) is the only enzyme known to catalyse hydrolysis of the O-glycosidic linkages of ADP-ribose polymers, thereby reversing the effects of poly(ADP-ribose) polymerases. PARG deficiency leads to cell death whilst PARG depletion causes sensitisation to certain DNA damaging agents, implicating PARG as a potential therapeutic target in several disease areas. Efforts to develop small molecule inhibitors of PARG activity have until recently been hampered by a lack of structural information on PARG. We have used a combination of bio-informatic and experimental approaches to engineer a crystallisable, catalytically active fragment of human PARG (hPARG). Here, we present high-resolution structures of the catalytic domain of hPARG in unliganded form and in complex with three inhibitors: ADP-ribose (ADPR), adenosine 5'-diphosphate (hydroxymethyl)pyrrolidinediol (ADP-HPD) and 8-n-octyl-amino-ADP-HPD. Our structures confirm conservation of overall fold amongst mammalian PARG glycohydrolase domains, whilst revealing additional flexible regions in the catalytic site. These new structures rationalise a body of published mutational data and the reported structure-activity relationship for ADP-HPD based PARG inhibitors. In addition, we have developed and used biochemical, isothermal titration calorimetry and surface plasmon resonance assays to characterise the binding of inhibitors to our PARG protein, thus providing a starting point for the design of new inhibitors

    Concordance between the Chang and the International Society of Pediatric Oncology (SIOP) ototoxicity grading scales in patients treated with cisplatin for medulloblastoma

    No full text
    BackgroundReporting ototoxicity is frequently complicated by use of various ototoxicity criteria. The International Society of Pediatric Oncology (SIOP) ototoxicity grading scale was recently proposed for standardized use in reporting hearing loss outcomes across institutions. The aim of this study was to evaluate the concordance between the Chang and SIOP ototoxicity grading scales. Differences between the two scales were identified and the implications these differences may have in the clinical setting were discussed.ProceduresAudiological evaluations were reviewed for 379 patients with newly diagnosed medulloblastoma (ages 3–21 years). Each patient was enrolled on one of two St. Jude clinical protocols that included craniospinal radiation therapy and four courses of 75 mg/m2 cisplatin chemotherapy. The latest audiogram conducted 5.5–24.5 months post-protocol treatment initiation was graded using the Chang and SIOP ototoxicity criteria. Clinically significant hearing loss was defined as Chang grade ≥2a and SIOP ≥2. Hearing loss was considered serious (requiring a hearing aid) at the level of Chang grade ≥2b and SIOP ≥3.ResultsA strong concordance was observed between the Chang and SIOP ototoxicity scales (Stuart\u27s tau-c statistic = 0.89, 95% CI: 0.86, 0.91). Among those patients diagnosed with serious hearing loss, the two scales were in good agreement. However, the scales deviated from one another in classifying patients with less serious or no hearing loss.ConclusionsAlthough discrepancies between the Chang and SIOP ototoxicity scales exist primarily for patients with no or minimal hearing loss, the scales share a strong concordance overall. Pediatr Blood Cancer 2014;61:601–605. © 2013 Wiley Periodicals, Inc

    ADP-HPD inhibition and binding data for human PARG constructs.

    No full text
    <p>Replicates are indicated in parentheses. IC<sub>50</sub> values are arithmetic means ± standard errors. Values quoted for the SPR and ITC data are arithmetic means ± absolute errors calculated by propagation of errors. SPR binding constants were derived from steady state fits. n.d. = not determined.</p

    Schematic structure-based mechanism for the reported endo- and exo-glycohydrolase activities in hPARG.

    No full text
    <p>Selected interacting residues and water molecules are shown, with H-bonds drawn as dashed lines. The terminal ADPR unit (R1 = H) or possibly also an internal ADPR unit (R1 = PAR) within a linear (R2 = linear chain) or branched (R2 = branch point) PAR chain bind to the hPARG catalytic site. Glu756 acts as the catalytic acid/base to effect cleavage of the scissile ribose” 1″-O-R2 bond, releasing shorter, linear PAR and possibly also de-branched PAR. The oxocarbenium ion intermediate undergoes nucleophilic attack by one of two water molecules via an inverting (Wat1, blue) or retaining (Wat2, red) mechanism, to generate ADPR (R1 = H, exo-glycohydrolysis), or possibly also shorter PAR (R1 = PAR, endo-glycohydrolysis).</p

    hPARG catalytic domain constructs show equivalent <i>in vitro</i> enzymatic activity and ADP-HPD binding properties as the full-length enzyme.

    No full text
    <p>(a) Time-course of PAR-PARP1 hydrolysis by recombinant PARG as measured in a homogeneous time-resolved fluorescence (HTRF) assay. Data points are the mean of three measurements carried out on separate occasions. (b) Inhibition of PAR-PARP1 hydrolysis by ADP-HPD. Data points are the mean of all measurements from three separate experiments, each run in triplicate ± Standard Error. Percent inhibition was calculated with respect to “No Enzyme” and “No Inhibitor” controls. (c) Representative binding sensorgrams and steady state fits for ADP-HPD binding to immobilised hPARG, hPARG4 and hPARG26 monitored by SPR. (d) Representative binding isotherms showing binding of ADP-HPD and OA-ADP-HPD to hPARG4 monitored by ITC.</p

    Binding of ADPR, ADP-HPD and OA-ADP-HPD is accompanied by conformational changes in the active site of human PARG.

    No full text
    <p>2Fo-Fc omit maps for bound ligand and waters are shown in blue contoured at 1σ. Pictures prepared using PyMol (Schrödinger, LLC). (a) hPARG26 in complex with ADPR. Electron density clearly reveals binding of the α-anomer. A tightly bound water molecule (Wat1, also present in the unliganded structure), positioned 3.1 Å from the ribose” anomeric carbon, has been proposed to act as a nucleophile during hydrolysis <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0050889#pone.0050889-Slade1" target="_blank">[23]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0050889#pone.0050889-Kim1" target="_blank">[25]</a>. The ribose” 1″-OH PAR attachment site lies 2.6 Å from Oε2 of the putative catalytic acid/base, Glu756 (see inset). Overlay of ADPR-bound (grey) and unliganded (pale-green) structures highlights closure of the conserved G<sup>873</sup>AFG loop over the di-phosphate moiety, and rotation of the Phe902 side-chain out of the adenine pocket upon ADPR binding. (b) hPARG26 in complex with the transition-state mimetic, ADP-HPD. As noted in the ADPR complex, a water molecule (Wat1) lies close to the anomeric carbon below the plane of the HPD-ring. In the ADP-HPD complex, a second water molecule (Wat2) lies 3.7 Å from the anomeric carbon above the plane of the HPD-ring and within H-bond distance (<2.3 Å) of the Glu756 side-chain (see inset). Both of these waters are also present in the unliganded hPARG26 structure. Either could generate product (ADPR) by nucleophilic attack on the transition-state after cleavage of the scissile bond. (c) hPARG26 in complex with OA-ADP-HPD. Overlay of OA-ADP-HPD-bound (grey) and ADP-HPD-bound (pale-green) structures highlights rotation of the Tyr-795 side-chain to accommodate the 8-<i>n</i>-octylamino moiety. (d) 2D structure depiction of compounds used in this study.</p
    corecore