10 research outputs found

    New cryptic species of Teratosphaeria on Eucalyptus in Australia

    Get PDF
    Teratosphaeria destructans and T. viscida are serious pathogens causing leaf, bud and shoot blight diseases of Eucalyptus plantations in the subtropics and tropics of South-East Asia (T. destructans) and North Queensland, Australia (T. viscida). During disease surveys in northern Western Australia and the Northern Territory of Australia, symptoms resembling those of T. destructans were observed on young and adult leaves of native and plantation Eucalyptus spp. and its hybrids. Phylogenetic studies revealed Teratosphaeria species associated with these symptoms are new taxonomic novelties described here as T. novaehollandiae and T. tiwiana spp. nov. Isolates from previous records of T. destructans recorded in Australia were re-examined and based upon the phylogenetic evidence are reassigned to these new taxa. We conclude that T. destructans is absent from Australia.The Australian Research Council DPO343600http://www.imafungus.orgam2017Forestry and Agricultural Biotechnology Institute (FABI

    Data from: Predictors of Phytophthora diversity and community composition in natural areas across diverse Australian ecoregions

    No full text
    Comprehensive understanding of the patterns and drivers of microbial diversity at a landscape scale is in its infancy, despite the recent ease by which soil communities can be characterized using massively parallel amplicon sequencing. Here we report on a comprehensive analysis of the drivers of diversity distribution and composition of the ecologically and economically important Phytophthora genus from 414 soil samples collected across Australia. We assessed 22 environmental and seven categorical variables as potential predictors of Phytophthora species richness, αandβ diversity, including both phylogenetically and non‐phylogenically explicit methods. In addition, we classified each species as putatively native or introduced and examined the distribution with respect to putative origin. The two most widespread species, P. multivora and P. cinamomi, are introduced, though five of the ten most widely distributed species are putatively native. Introduced taxa comprised over 54% of Australia's Phytophthora diversity and these species are known pathogens of annual and perennial crop habitats as well as urban landscapes and forestry. Patterns of composition were most strongly predicted by bioregion (R2=0.29) and ecoregion (R2=0.26) identity; mean precipitation of warmest quarter, mean temperature of the wettest quarter and latitude were also highly significant and described approximately 21%, 14% and 13% of variation in NMDS composition, respectively. We also found statistically significant evidence for phylogenetic over‐dispersion with respect to key climate variables.This study provides a strong baseline for understanding biogeographical patterns in this important genus as well the impact of key plant pathogens and invasive Phytophthora species in natural ecosystems

    Appendix D. Results of the independent t tests between desirable and deviated states of restoration of the same age of all 18 species that were recorded frequently enough to be analyzed in at least one restoration age.

    No full text
    Results of the independent t tests between desirable and deviated states of restoration of the same age of all 18 species that were recorded frequently enough to be analyzed in at least one restoration age
    corecore