73 research outputs found

    Dredging fundamentally reshapes the ecological significance of 3D terrain features for fish in estuarine seascapes

    Get PDF
    Context: Landscape modification alters the condition of ecosystems and the structure of terrain, with widespread impacts on biodiversity and ecosystem functioning. Seafloor dredging impacts a diversity of flora and fauna in many coastal landscapes, and these processes also transform three-dimensional terrain features. The potential ecological significance of these terrain changes in urban seascapes has, however, not been investigated. Objectives: We examined the effects of terrain variation on fish assemblages in 29 estuaries in eastern Australia, and tested whether dredging changes how fish associate with terrain features. Methods: We surveyed fish assemblages with baited remote underwater video stations and quantified terrain variation with nine complementary metrics (e.g. depth, aspect, curvature, slope, roughness), extracted from bathymetry maps created with multi-beam sonar. Results: Fish diversity and abundance were strongly linked to seafloor terrain in both natural and dredged estuaries, and were highest in shallow waters and near features with high curvature. Dredging, however, significantly altered the terrain of dredged estuaries and transformed the significance of terrain features for fish assemblages. Abundance and diversity switched from being correlated with lower roughness and steeper slopes in natural estuaries to being linked to features with higher roughness and gentler slopes in dredged estuaries. Conclusions: Contrasting fish-terrain relationships highlight previously unrecognised ecological impacts of dredging, but indicate that plasticity in terrain use might be characteristic of assemblages in urban landscapes. Incorporating terrain features into spatial conservation planning might help to improve management outcomes, but we suggest that different approaches would be needed in natural and modified landscapes

    Seafloor Terrain Shapes the Three-dimensional Nursery Value of Mangrove and Seagrass Habitats

    Get PDF
    Mangroves and seagrasses are important nurseries for many marine species, and this function is linked to the complexity and context of these habitats in coastal seascapes. It is also connected to bathymetric features that influence habitat availability, and the accessibility of refuge habitats, but the significance of terrain variation for nursery function is unknown. To test whether seafloor terrain influences nursery function, we surveyed fish assemblages from mangrove and seagrass habitats in 29 estuaries in eastern Australia with unbaited underwater cameras and quantified the surrounding three-dimensional terrain with a set of complementary surface metrics (that is, depth, aspect, curvature, slope, roughness) applied to sonar-derived bathymetric maps. Terrain metrics explained variability in assemblages in both mangroves and seagrasses, with differing effects for the entire fish assemblage and nursery species composition, and between habitats. Higher depth, plan curvature (concavity or convexity) and roughness (backscatter) were negatively correlated with abundance and diversity in mangroves and positively linked to abundance and diversity in seagrass. Mangrove nursery species (6 species) were most abundant in forests adjacent to flats with concave holes, rough substrates and low-moderate depths, whereas seagrass nursery species (3 species) were most abundant in meadows adjacent to deep channels with soft mounds and ledges. These findings indicate that seafloor terrain influences nursery function and demonstrate contrasting effects of terrain variation in mangroves and seagrass. We suggest that incorporating three-dimensional terrain into coastal conservation and restoration plans could help to improve outcomes for fisheries management, but contrasting strategies might be needed for different nursery habitats

    Turning a lost reef ecosystem into a national restoration program

    Get PDF
    Achieving a sustainable socioecological future now requires large-scale environmental repair across legislative borders. Yet, enabling large-scale conservation is complicated by policy-making processes that are disconnected from socioeconomic interests, multiple sources of knowledge, and differing applications of policy. We considered how a multidisciplinary approach to marine habitat restoration generated the scientific evidence base, community support, and funding needed to begin the restoration of a forgotten, functionally extinct shellfish reef ecosystem. The key actors came together as a multidisciplinary community of researchers, conservation practitioners, recreational fisher communities, and government bodies that collaborated across sectors to rediscover Australia's lost shellfish reefs and communicate the value of its restoration. Actions undertaken to build a case for large-scale marine restoration included synthesizing current knowledge on Australian shellfish reefs and their historical decline, using this history to tell a compelling story to spark public and political interest, integrating restoration into government policy, and rallying local support through community engagement. Clearly articulating the social, economic, and environmental business case for restoration led to state and national funding for reef restoration to meet diverse sustainability goals (e.g., enhanced biodiversity and fisheries productivity) and socioeconomic goals (e.g., job creation and recreational opportunities). A key lesson learned was the importance of aligning project goals with public and industry interests so that projects could address multiple political obligations. This process culminated in Australia's largest marine restoration initiative and shows that solutions for large-scale ecosystem repair can rapidly occur when socially valued science acts on political opportunities

    The early shorebird will catch fewer invertebrates on trampled sandy beaches

    Full text link
    Many species of birds breeding on ocean beaches and in coastal dunes are of global conservation concern. Most of these species rely on invertebrates (e.g. insects, small crustaceans) as an irreplaceable food source, foraging primarily around the strandline on the upper beach near the dunes. Sandy beaches are also prime sites for human recreation, which impacts these food resources via negative trampling effects. We quantified acute trampling impacts on assemblages of upper shore invertebrates in a controlled experiment over a range of foot traffic intensities (up to 56 steps per square metre) on a temperate beach in Victoria, Australia. Trampling significantly altered assemblage structure (species composition and density) and was correlated with significant declines in invertebrate abundance and species richness. Trampling effects were strongest for rare species. In heavily trafficked plots the abundance of sand hoppers (Amphipoda), a principal prey item of threatened Hooded Plovers breeding on this beach, was halved. In contrast to the consistently strong effects of trampling, natural habitat attributes (e.g. sediment grain size, compactness) were much less influential predictors. If acute suppression of invertebrates caused by trampling, as demonstrated here, is more widespread on beaches it may constitute a significant threat to endangered vertebrates reliant on these invertebrates. This calls for a re-thinking of conservation actions by considering active management of food resources, possibly through enhancement of wrack or direct augmentation of prey items to breeding territories

    Geographic Variation in Salt Marsh Structure and Function for Nekton: a Guide to Finding Commonality Across Multiple Scales

    Get PDF
    Coastal salt marshes are distributed widely across the globe and are considered essential habitat for many fish and crustacean species. Yet, the literature on fishery support by salt marshes has largely been based on a few geographically distinct model systems, and as a result, inadequately captures the hierarchical nature of salt marsh pattern, process, and variation across space and time. A better understanding of geographic variation and drivers of commonalities and differences across salt marsh systems is essential to informing future management practices. Here, we address the key drivers of geographic variation in salt marshes: hydroperiod, seascape configuration, geomorphology, climatic region, sediment supply and riverine input, salinity, vegetation composition, and human activities. Future efforts to manage, conserve, and restore these habitats will require consideration of how environmental drivers within marshes affect the overall structure and subsequent function for fisheries species. We propose a future research agenda that provides both the consistent collection and reporting of sources of variation in small-scale studies and collaborative networks running parallel studies across large scales and geographically distinct locations to provide analogous information for data poor locations. These comparisons are needed to identify and prioritize restoration or conservation efforts, identify sources of variation among regions, and best manage fisheries and food resources across the globe

    Ecological and Cultural Understanding as a Basis for Management of a Globally Significant Island Landscape

    Get PDF
    Islands provide the opportunity to explore management regimes and research issues related to the isolation, uniqueness, and integrity of ecological systems. K’gari (Fraser Island) is an Australian World Heritage property listed based on its outstanding natural value, specifically, the unique wilderness characteristics and the diversity of ecosystem types. Our goal was to draw on an understanding of the natural and cultural environment of K’gari as a foundation on which to build a management model that includes First Nations Peoples in future management and research. Our research involved an analysis of papers in the peer-reviewed scientific literature, original reports, letters, and other manuscripts now housed in the K’gari Fraser Island Research Archive. The objectives of the research were: (1) to review key historical events that form the cultural, social, and environmental narrative; (2) review the major natural features of the island and threats; (3) identify the gaps in research; (4) analyse the management and conservation challenges associated with tourism, biosecurity threats, vegetation management practices, and climate change and discuss whether the requirements for sustaining island ecological integrity can be met in the future; and (5) identify commonalities and general management principles that may apply globally to other island systems and other World Heritage sites listed on the basis of their unique natural and cultural features. We found that the characteristics that contribute to island uniqueness are also constraints for research funding and publication; however, they are important themes that warrant more investment. Our review suggests that K’gari is a contested space between tourist visitation and associated environmental impacts, with an island that has rich First Nations history, extraordinary ecological diversity, and breathtaking aesthetic beauty. This juxtaposition is reflected in disparate views of custodianship and use, and the management strategies are needed to achieve multiple objectives in an environmentally sustainable way whilst creating cultural equity in modern times. We offer a foundation on which to build a co-management model that includes First Nations Peoples in governance, management, research, and monitoring

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Meta-analysis indicates habitat-specific alterations to primary producer and herbivore communities in marine protected areas

    Get PDF
    AbstractUnderstanding changes in trophic group interactions following the implementation of marine protected areas (MPAs) is critical in understanding their success, or otherwise. A systematic review and meta-analysis was used to determine trends in the effects of MPAs on primary producers and herbivores from 57 locations throughout the world. On coral reefs, macroalgal coverage and sea urchin density were significantly (p<0.05) lower within MPAs, with 79% and 83% of MPAs reporting smaller populations of these groups, respectively. Conversely, in kelp/algal habitats, where habitat-forming macroalgae are beneficial, no statistical differences were found in either algal coverage or herbivore density, however, 70% of MPAs reported lower densities of urchins. Finally, we found that the literature conveyed a significant negative relationship between grazer density effect sizes and macroalgal coverage effect sizes. Our results indicate that the tropho-dynamics of recovering fish populations in disparate habitats is likely to be more complex than initially thought, and partly driven by differential fisheries and habitat effects. This study highlights the importance of selecting MPAs based on the processes that assist in the recovery of ecosystems in the aftermath of fishing, in addition to habitat quality and representativeness

    Low functional redundancy and high variability in Sargassum browsing fish populations in a subtropical reef system

    No full text
    Establishing levels of functional redundancy in browsing fish populations among sampling periods and across spatial gradients is important in understanding coral reef functioning. We used baited video techniques to determine functional redundancy and variability in browsing herbivores within no-take marine protected areas (MPAs) and reference fished sites across two sampling periods and four reef types (scaling from high to low coral cover) in Moreton Bay, Australia (,278S, 1538E). We hypothesised higher herbivore abundance and browsing rates in MPAs due to protection from fishing, but lower functional redundancy in Moreton Bay generally than in tropical reefs. The function of Sargassum browsing in Moreton Bay is conducted by a single species (rabbitfish Siganus fuscescens), which is unlikely to browse at ecologically significant rates. Siganus fuscescens abundance was variable between reef types, sampling periods and individual sites, such that their abundance and browsing rates were not higher within MPAs. Similar spatial and temporal variability was found for fish community structure, indicating that other functional roles might not be influenced by MPA protection in Moreton Bay. We highlight the importance of accounting for variability in fish communities and ecosystem processes across spatial and temporal periods in considering the influence of no-take MPAs. Journal compilation
    corecore