150 research outputs found
Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays
<p>Abstract</p> <p>Background</p> <p>Tumor-predominant splice isoforms were identified during comparative <it>in silico </it>sequence analysis of EST clones, suggesting that global aberrant alternative pre-mRNA splicing may be an epigenetic phenomenon in cancer. We used an exon expression array to perform an objective, genome-wide survey of glioma-specific splicing in 24 GBM and 12 nontumor brain samples. Validation studies were performed using RT-PCR on glioma cell lines, patient tumor and nontumor brain samples.</p> <p>Results</p> <p>In total, we confirmed 14 genes with glioma-specific splicing; seven were novel events identified by the exon expression array (<it>A2BP1, BCAS1, CACNA1G, CLTA, KCNC2, SNCB</it>, and <it>TPD52L2</it>). Our data indicate that large changes (> 5-fold) in alternative splicing are infrequent in gliomagenesis (< 3% of interrogated RefSeq entries). The lack of splicing changes may derive from the small number of splicing factors observed to be aberrantly expressed.</p> <p>Conclusion</p> <p>While we observed some tumor-specific alternative splicing, the number of genes showing exclusive tumor-specific isoforms was on the order of tens, rather than the hundreds suggested previously by <it>in silico </it>mining. Given the important role of alternative splicing in neural differentiation, there may be selective pressure to maintain a majority of splicing events in order to retain glial-like characteristics of the tumor cells.</p
A T Cell-inducing influenza vaccine for the elderly: safety and immunogenicity of MVA-NP+M1 in adults aged over 50 years
Current influenza vaccines have reduced immunogenicity and are of uncertain efficacy in older adults. We assessed the safety and immunogenicity of MVA-NP+M1, a viral-vectored influenza vaccine designed to boost memory T cell responses, in a group of older adults.Thirty volunteers (aged 50-85) received a single intramuscular injection of MVA-NP+M1 at a dose of 1·5×10(8) plaque forming units (pfu). Safety and immunogenicity were assessed over a period of one year. The frequency of T cells specific for nucleoprotein (NP) and matrix protein 1 (M1) was determined by interferon-gamma (IFN-γ) ELISpot, and their phenotypic and functional properties were characterized by polychromatic flow cytometry. In a subset of M1-specific CD8(+) T cells, T cell receptor (TCR) gene expression was evaluated using an unbiased molecular approach.Vaccination with MVA-NP+M1 was well tolerated. ELISpot responses were boosted significantly above baseline following vaccination. Increases were detected in both CD4(+) and CD8(+) T cell subsets. Clonality studies indicated that MVA-NP+M1 expanded pre-existing memory CD8(+) T cells, which displayed a predominant CD27(+)CD45RO(+)CD57(-)CCR7(-) phenotype both before and after vaccination.MVA-NP+M1 is safe and immunogenic in older adults. Unlike seasonal influenza vaccination, the immune responses generated by MVA-NP+M1 are similar between younger and older individuals. A T cell-inducing vaccine such as MVA-NP+M1 may therefore provide a way to circumvent the immunosenescence that impairs routine influenza vaccination.ClinicalTrials.gov NCT00942071
Salmonella Infection Drives Promiscuous B Cell Activation Followed by Extrafollicular Affinity Maturation
SummaryThe B cell response to Salmonella typhimurium (STm) occurs massively at extrafollicular sites, without notable germinal centers (GCs). Little is known in terms of its specificity. To expand the knowledge of antigen targets, we screened plasmablast (PB)-derived monoclonal antibodies (mAbs) for Salmonella specificity, using ELISA, flow cytometry, and antigen microarray. Only a small fraction (0.5%–2%) of the response appeared to be Salmonella-specific. Yet, infection of mice with limited B cell receptor (BCR) repertoires impaired the response, suggesting that BCR specificity was important. We showed, using laser microdissection, that somatic hypermutation (SHM) occurred efficiently at extrafollicular sites leading to affinity maturation that in turn led to detectable STm Ag-binding. These results suggest a revised vision of how clonal selection and affinity maturation operate in response to Salmonella. Clonal selection initially is promiscuous, activating cells with virtually undetectable affinity, yet SHM and selection occur during the extrafollicular response yielding higher affinity, detectable antibodies
Accuracy of Digital Breast Tomosynthesis for Depicting Breast Cancer Subgroups in a UK Retrospective Reading Study (TOMMY Trial).
PURPOSE: To compare the diagnostic performance of two-dimensional (2D) mammography, 2D mammography plus digital breast tomosynthesis (DBT), and synthetic 2D mammography plus DBT in depicting malignant radiographic features. MATERIALS AND METHODS: In this multicenter, multireader, retrospective reading study (the TOMMY trial), after written informed consent was obtained, 8869 women (age range, 29-85 years; mean, 56 years) were recruited from July 2011 to March 2013 in an ethically approved study. From these women, a reading dataset of 7060 cases was randomly allocated for independent blinded review of (a) 2D mammography images, (b) 2D mammography plus DBT images, and (c) synthetic 2D mammography plus DBT images. Reviewers had no access to results of previous examinations. Overall sensitivities and specificities were calculated for younger women and those with dense breasts. RESULTS: Overall sensitivity was 87% for 2D mammography, 89% for 2D mammography plus DBT, and 88% for synthetic 2D mammography plus DBT. The addition of DBT was associated with a 34% increase in the odds of depicting cancer (odds ratio [OR] = 1.34, P = .06); however, this level did not achieve significance. For patients aged 50-59 years old, sensitivity was significantly higher (P = .01) for 2D mammography plus DBT than it was for 2D mammography. For those with breast density of 50% or more, sensitivity was 86% for 2D mammography compared with 93% for 2D mammography plus DBT (P = .03). Specificity was 57% for 2D mammography, 70% for 2D mammography plus DBT, and 72% for synthetic 2D mammography plusmDBT. Specificity was significantly higher than 2D mammography (P < .001in both cases) and was observed for all subgroups (P < .001 for all cases). CONCLUSION: The addition of DBT increased the sensitivity of 2D mammography in patients with dense breasts and the specificity of 2D mammography for all subgroups. The use of synthetic 2D DBT demonstrated performance similar to that of standard 2D mammography with DBT. DBT is of potential benefit to screening programs, particularly in younger women with dense breasts. (©) RSNA, 2015.The TOMMY Trial (a comparison of digital breast tomosynthesis with mammography in the UK Breast Screening Programme) was supported by the NIHR Health Technology Assessment Programme.This is the final published version of the article. It was originally published in Radiology (Gilbert et al., Radiology, 2015, doi:10.1148/radiol.2015142566). The final version is available at http://dx.doi.org/10.1148/radiol.201514256
Accuracy of Digital Breast Tomosynthesis for Depicting Breast Cancer Subgroups in a UK Retrospective Reading Study (TOMMY Trial)
Purpose
To compare the diagnostic performance of two-dimensional (2D) mammography, 2D mammography plus digital breast tomosynthesis (DBT), and synthetic 2D mammography plus DBT in depicting malignant radiographic features.
Materials and Methods
In this multicenter, multireader, retrospective reading study (the TOMMY trial), after written informed consent was obtained, 8869 women (age range, 29–85 years; mean, 56 years) were recruited from July 2011 to March 2013 in an ethically approved study. From these women, a reading dataset of 7060 cases was randomly allocated for independent blinded review of (a) 2D mammography images, (b) 2D mammography plus DBT images, and (c) synthetic 2D mammography plus DBT images. Reviewers had no access to results of previous examinations. Overall sensitivities and specificities were calculated for younger women and those with dense breasts.
Results
Overall sensitivity was 87% for 2D mammography, 89% for 2D mammography plus DBT, and 88% for synthetic 2D mammography plus DBT. The addition of DBT was associated with a 34% increase in the odds of depicting cancer (odds ratio [OR] = 1.34, P = .06); however, this level did not achieve significance. For patients aged 50–59 years old, sensitivity was significantly higher (P = .01) for 2D mammography plus DBT than it was for 2D mammography. For those with breast density of 50% or more, sensitivity was 86% for 2D mammography compared with 93% for 2D mammography plus DBT (P = .03). Specificity was 57% for 2D mammography, 70% for 2D mammography plus DBT, and 72% for synthetic 2D mammography plusmDBT. Specificity was significantly higher than 2D mammography (P < .001in both cases) and was observed for all subgroups (P < .001 for all cases).
Conclusion
The addition of DBT increased the sensitivity of 2D mammography in patients with dense breasts and the specificity of 2D mammography for all subgroups. The use of synthetic 2D DBT demonstrated performance similar to that of standard 2D mammography with DBT. DBT is of potential benefit to screening programs, particularly in younger women with dense breasts.
© RSNA, 2015The TOMMY Trial (a comparison of digital breast tomosynthesis with mammography in the UK Breast Screening Programme) was supported by the NIHR Health Technology Assessment Programme.This is the final published version of the article. It was originally published in Radiology (Gilbert et al., Radiology, 2015, doi:10.1148/radiol.2015142566). The final version is available at http://dx.doi.org/10.1148/radiol.201514256
Preliminary Assessment of the Efficacy of a T-Cell–Based Influenza Vaccine, MVA-NP+M1, in Humans
A single vaccination with MVA-NP+M1 boosts T-cell responses to conserved influenza antigens in humans. Protection against influenza disease and virus shedding was demonstrated in an influenza virus challenge study
Mammographic density and breast cancer risk in breast screening assessment cases and women with a family history of breast cancer.
BACKGROUND: Mammographic density has been shown to be a strong independent predictor of breast cancer and a causative factor in reducing the sensitivity of mammography. There remain questions as to the use of mammographic density information in the context of screening and risk management, and of the association with cancer in populations known to be at increased risk of breast cancer. AIM: To assess the association of breast density with presence of cancer by measuring mammographic density visually as a percentage, and with two automated volumetric methods, Quantra™ and VolparaDensity™. METHODS: The TOMosynthesis with digital MammographY (TOMMY) study of digital breast tomosynthesis in the Breast Screening Programme of the National Health Service (NHS) of the United Kingdom (UK) included 6020 breast screening assessment cases (of whom 1158 had breast cancer) and 1040 screened women with a family history of breast cancer (of whom two had breast cancer). We assessed the association of each measure with breast cancer risk in these populations at enhanced risk, using logistic regression adjusted for age and total breast volume as a surrogate for body mass index (BMI). RESULTS: All density measures showed a positive association with presence of cancer and all declined with age. The strongest effect was seen with Volpara absolute density, with a significant 3% (95% CI 1-5%) increase in risk per 10 cm3 of dense tissue. The effect of Volpara volumetric density on risk was stronger for large and grade 3 tumours. CONCLUSIONS: Automated absolute breast density is a predictor of breast cancer risk in populations at enhanced risk due to either positive mammographic findings or family history. In the screening context, density could be a trigger for more intensive imaging
The Isolation of Nucleic Acids from Fixed, Paraffin-Embedded Tissues–Which Methods Are Useful When?
Museums and pathology collections around the world represent an archive of genetic material to study populations and diseases. For preservation purposes, a large portion of these collections has been fixed in formalin-containing solutions, a treatment that results in cross-linking of biomolecules. Cross-linking not only complicates isolation of nucleic acid but also introduces polymerase “blocks” during PCR. A wide variety of methods exists for the recovery of DNA and RNA from archival tissues, and although a number of previous studies have qualitatively compared the relative merits of the different techniques, very few have undertaken wide scale quantitative comparisons. To help address this issue, we have undertaken a study that investigates the quality of nucleic acids recovered from a test panel of fixed specimens that have been manipulated following a number of the published protocols. These include methods of pre-treating the samples prior to extraction, extraction and nucleic acid purification methods themselves, and a post-extraction enzymatic repair technique. We find that although many of the published methods have distinct positive effects on some characteristics of the nucleic acids, the benefits often come at a cost. In addition, a number of the previously published techniques appear to have no effect at all. Our findings recommend that the extraction methodology adopted should be chosen carefully. Here we provide a quick reference table that can be used to determine appropriate protocols for particular aims
Frequent and Efficient Use of the Sister Chromatid for DNA Double-Strand Break Repair during Budding Yeast Meiosis
Studies of DNA double-strand break repair during meiosis reveal that a substantial fraction of recombination occurs between sister chromatids
Population genomics of the Viking world.
The maritime expansion of Scandinavian populations during the Viking Age (about AD 750-1050) was a far-flung transformation in world history1,2. Here we sequenced the genomes of 442 humans from archaeological sites across Europe and Greenland (to a median depth of about 1×) to understand the global influence of this expansion. We find the Viking period involved gene flow into Scandinavia from the south and east. We observe genetic structure within Scandinavia, with diversity hotspots in the south and restricted gene flow within Scandinavia. We find evidence for a major influx of Danish ancestry into England; a Swedish influx into the Baltic; and Norwegian influx into Ireland, Iceland and Greenland. Additionally, we see substantial ancestry from elsewhere in Europe entering Scandinavia during the Viking Age. Our ancient DNA analysis also revealed that a Viking expedition included close family members. By comparing with modern populations, we find that pigmentation-associated loci have undergone strong population differentiation during the past millennium, and trace positively selected loci-including the lactase-persistence allele of LCT and alleles of ANKA that are associated with the immune response-in detail. We conclude that the Viking diaspora was characterized by substantial transregional engagement: distinct populations influenced the genomic makeup of different regions of Europe, and Scandinavia experienced increased contact with the rest of the continent
- …