2,545 research outputs found

    IF IT AIN'T BROKE, IMPROVE IT: THOUGHTS ON ENGAGING EDUCATION FOR US ALL

    Get PDF
    One of the continuing challenges of education is enabling those who strive to improve teaching, learning, and research to take advantage of the too-rapidly-changing new environment created by telecommunications and information technologies. To do so, educational professionals should engage in lifelong professional development and use new hybrid technologies to help build community and support collaboration. This paper explores the issues of technology and professional development from the frame of reference of my work with hundreds of colleges that have benefited from the Teaching, Learning, and Technology Group (TLT Group), an organization whose mission is to motivate and enable institutions and individuals to improve teaching and learning with technology, while helping them cope with change. This article discusses challenges that higher education faces: creating visions worth working toward; developing strategies and tools for achieving intermediate goals; and the importance of breaking taboos along the way

    Possible Deficiencies in Predicting Transonic Aerodynamics on the X-43A

    Get PDF
    The initial X-43A flight test, June 2, 2001, resulted in a mishap and loss of the vehicle. A mishap investigation board (MIB) report and findings, including the established root cause, were publicly released on July, 23, 2003. The X-43A Flight 1 Hyper-X Launch Vehicle (HXLV) failed because the vehicle control system design was deficient for the trajectory flown due to inaccurate analytical models (Pegasus heritage and HXLV specific), which overestimated the (control) system margin ? X-43A Mishap Investigation Report, Vol. I. ? included as Reference 1. Several specific errors were noted, 1) HXLV aerodynamics ? failure to model changes to wing, fin and rudder airfoil shapes due to addition of thermal protection system (TPS); 2) Fin actuation system (FAS) modeling ? under prediction of the control surface hinge moments and FAS compliance; and 3) Parametric uncertainties ? insufficient variation in the aerodynamic, FAS and control system models. In response to the MIB findings, the X-43A program has been working RTF through an approved Corrective Action Plan (CAP) over the last two years

    Factors Affecting the Adoption of Faculty-Developed Academic Software: A Study of Five iCampus Projects

    Get PDF
    Instruction in higher education must adapt more rapidly to: changes in workforce needs, global issues, advances in disciplines, and resource constraints. The pace of such improvement depends on the speed with which new ideas and materials are adopted across institutions. In 1999 Microsoft pledged $25 million and staff support for iCampus, a seven-year MIT project to develop pioneering uses of educational technology. The TLT Group studied five iCampus projects in order to identify factors affecting institutionalization and widespread dissemination. Among the factors impeding adoption: lack of rewards and support for faculty to adopt innovations; faculty isolation; and a lack of attention to adoption issues among projects selected for funding. The study made recommendations for universities, foundations, government agencies and corporations: 1) continue making education more authentic, active, collaborative, and feedback-rich; 2) create demand to adopt ideas and materials from other sources by encouraging all faculty members to improve and document learning in their programs, year after year; 3) nurture coalitions for instructional improvement, across and within institutions; 4) create more effective higher education corporate alliances; and 5) improve institutional services to support faculty in educational design, software development, assessment methods, formative evaluation, and/or in sharing ideas with others who teach comparable courses

    Malware Type Recognition and Cyber Situational Awareness

    Get PDF
    Current technologies for computer network and host defense do not provide suitable information to support strategic and tactical decision making processes. Although pattern-based malware detection is an active research area, the additional context of the type of malware can improve cyber situational awareness. This additional context is an indicator of threat capability thus allowing organizations to assess information losses and focus response actions appropriately. Malware Type Recognition (MaTR) is a research initiative extending detection technologies to provide the additional context of malware types using only static heuristics. Test results with MaTR demonstrate over a 99% accurate detection rate and 59% test accuracy in malware typing

    Malware Target Recognition via Static Heuristics

    Get PDF
    Organizations increasingly rely on the confidentiality, integrity and availability of their information and communications technologies to conduct effective business operations while maintaining their competitive edge. Exploitation of these networks via the introduction of undetected malware ultimately degrades their competitive edge, while taking advantage of limited network visibility and the high cost of analyzing massive numbers of programs. This article introduces the novel Malware Target Recognition (MaTR) system which combines the decision tree machine learning algorithm with static heuristic features for malware detection. By focusing on contextually important static heuristic features, this research demonstrates superior detection results. Experimental results on large sample datasets demonstrate near ideal malware detection performance (99.9+% accuracy) with low false positive (8.73e-4) and false negative rates (8.03e-4) at the same point on the performance curve. Test results against a set of publicly unknown malware, including potential advanced competitor tools, show MaTR’s superior detection rate (99%) versus the union of detections from three commercial antivirus products (60%). The resulting model is a fine granularity sensor with potential to dramatically augment cyberspace situation awareness

    HATNet Field G205: Follow-Up Observations of 28 Transiting-Planet candidates and Confirmation of the Planet HAT-P-8b

    Full text link
    We report the identification of 32 transiting-planet candidates in HATNet field G205. We describe the procedures that we have used to follow up these candidates with spectroscopic and photometric observations, and we present a status report on our interpretation of the 28 candidates for which we have follow-up observations. Eight are eclipsing binaries with orbital solutions whose periods are consistent with their photometric ephemerides; two of these spectroscopic orbits are singled-lined and six are double-lined. For one of the candidates, a nearby but fainter eclipsing binary proved to be the source for the HATNet light curve, due to blending in the HATNet images. Four of the candidates were found to be rotating more rapidly than vsini = 50 km/s and were not pursued further. Thirteen of the candidates showed no significant velocity variation at the level of 0.5 to 1.0 km/s . Seven of these were eventually withdrawn as photometric false alarms based on an independent reanalysis using more sophisticated tools. Of the remaining six, one was put aside because a close visual companion proved to be a spectroscopic binary, and two were not followed up because the host stars were judged to be too large. Two of the remaining candidates are members of a visual binary, one of which was previously confirmed as the first HATNet transiting planet, HAT-P-1b. In this paper we confirm that the last of this set of candidates is also a a transiting planet, which we designate HAT-P-8b, with mass Mp = 1.52 +/- 0.18/0.16 Mjup, radius Rp = 1.50 +/- 0.08/0.06 Rjup, and photometric period P = 3.076320 +/- 0.000004 days. HAT-P-8b has an inflated radius for its mass, and a large mass for its period. The host star is a solar-metallicity F dwarf, with mass M* = 1.28 +/- 0.04 Msun and Rp = 1.58 +/- 0.08/0.06 Rsun.Comment: 16 pages, 6 figures, 13 table

    Activity of immunoproteasome inhibitor ONX-0914 in acute lymphoblastic leukemia expressing MLL–AF4 fusion protein

    Get PDF
    Proteasome inhibitors bortezomib and carfilzomib are approved for the treatment of multiple myeloma and mantle cell lymphoma and have demonstrated clinical efficacy for the treatment of acute lymphoblastic leukemia (ALL). The t(4;11)(q21;q23) chromosomal translocation that leads to the expression of MLL–AF4 fusion protein and confers a poor prognosis, is the major cause of infant ALL. This translocation sensitizes tumor cells to proteasome inhibitors, but toxicities of bortezomib and carfilzomib may limit their use in pediatric patients. Many of these toxicities are caused by on-target inhibition of proteasomes in non-lymphoid tissues (e.g., heart muscle, gut, testicles). We found that MLL–AF4 cells express high levels of lymphoid tissue-specific immunoproteasomes and are sensitive to pharmacologically relevant concentrations of specific immunoproteasome inhibitor ONX-0914, even in the presence of stromal cells. Inhibition of multiple active sites of the immunoproteasomes was required to achieve cytotoxicity against ALL. ONX-0914, an inhibitor of LMP7 (ß5i) and LMP2 (ß1i) sites of the immunoproteasome, and LU-102, inhibitor of proteasome ß2 sites, exhibited synergistic cytotoxicity. Treatment with ONX-0914 significantly delayed the growth of orthotopic ALL xenograft tumors in mice. T-cell ALL lines were also sensitive to pharmacologically relevant concentrations of ONX-0914. This study provides a strong rationale for testing clinical stage immunoproteasome inhibitors KZ-616 and M3258 in ALL

    Emerging Opportunities for Landscape Ecological Modelling

    Get PDF
    Landscape ecological modelling provides a vital means for understanding the interactions between geographical, climatic, and socio-economic drivers of land-use and the dynamics of ecological systems. This growing field is playing an increasing role in informing landscape spatial planning and management. Here, we review the key modelling approaches that are used in landscape modelling and in ecological modelling. We identify an emerging theme of increasingly detailed representation of process in both landscape and ecological modelling, with complementary suites of modelling approaches ranging from correlative, through aggregated process based approaches to models with much greater structural realism that often represent behaviours at the level of agents or individuals. We provide examples of the considerable progress that has been made at the intersection of landscape modelling and ecological modelling, while also highlighting that the majority of this work has to date exploited a relatively small number of the possible combinations of model types from each discipline. We use this review to identify key gaps in existing landscape ecological modelling effort and highlight emerging opportunities, in particular for future work to progress in novel directions by combining classes of landscape models and ecological models that have rarely been used together

    Sustained Reduction of Diversion and Abuse after Introduction of an Abuse Deterrent Formulation of Extended Release Oxycodone

    Get PDF
    Background: The development of abuse deterrent formulations is one strategy for reducing prescription opioid misuse and abuse. A putative abuse deterrent formulation of oxycodone extended release (OxyContinÂź) was introduced in 2010. Early reports demonstrated reduced abuse and diversion, however, an analysis of social media found 32 feasible methods to circumventthe abuse deterrent mechanism. We measured trends of diversion, abuse and street price of OxyContin to assess the durability ofthe initial reduction in abuse. Methods: Data from the Poison Center Program, Drug Diversion Program, Opioid Treatment Program, Survey of Key Informant Patients Program and StreetRx program of the Researched Abuse, Diversion, and Addiction-Related Surveillance (RADARSÂź) System were used. The average quarterly rates of abuse and diversion for OxyContin were compared from before reformulation to the rate in second quarter 2015. Rates were adjusted for population using US Census data and drug availability. Results: OxyContin abuse and diversion declined significantly each quarter after reformulation and persisted for 5 years. The rate of abuse of other opioid analgesics increased initially and then decreased, but to lesser extent than OxyContin. Abuse through both oral and non-oral routes of self-administration declined following the reformulation. The geometric mean difference in the street price of reformulated OxyContin was 36% lower than the reformulated product in the year after reformulation. Discussion: Despite methods to circumvent the abuse deterrent mechanism, abuse and diversion of OxyContin decreased promptly following the introduction of a crush- and solubility- resistant formulation and continued to decrease over the subsequent 5 years

    Do ceramic femoral heads reduce taper fretting corrosion in hip arthroplasty? A retrieval study.

    Get PDF
    BACKGROUND: Previous studies regarding modular head-neck taper corrosion were largely based on cobalt chrome (CoCr) alloy femoral heads. Less is known about head-neck taper corrosion with ceramic femoral heads. QUESTIONS/PURPOSES: We asked (1) whether ceramic heads resulted in less taper corrosion than CoCr heads; (2) what device and patient factors influence taper fretting corrosion; and (3) whether the mechanism of taper fretting corrosion in ceramic heads differs from that in CoCr heads. METHODS: One hundred femoral head-stem pairs were analyzed for evidence of fretting and corrosion using a visual scoring technique based on the severity and extent of fretting and corrosion damage observed at the taper. A matched cohort design was used in which 50 ceramic head-stem pairs were matched with 50 CoCr head-stem pairs based on implantation time, lateral offset, stem design, and flexural rigidity. RESULTS: Fretting and corrosion scores were lower for the stems in the ceramic head cohort (p=0.03). Stem alloy (p=0.004) and lower stem flexural rigidity (Spearman\u27s rho=-0.32, p=0.02) predicted stem fretting and corrosion damage in the ceramic head cohort but not in the metal head cohort. The mechanism of mechanically assisted crevice corrosion was similar in both cohorts although in the case of ceramic femoral heads, only one of the two surfaces (the male metal taper) engaged in the oxide abrasion and repassivation process. CONCLUSIONS: The results suggest that by using a ceramic femoral head, CoCr fretting and corrosion from the modular head-neck taper may be mitigated but not eliminated. CLINICAL RELEVANCE: The findings of this study support further study of the role of ceramic heads in potentially reducing femoral taper corrosion
    • 

    corecore