217 research outputs found
Arcadi Espada, ed.: Dietario de posguerra
Review of: Arcadi Espada, ed. Dietario de posguerra. Barcelona, Anagrama, 1998, 193 pp
Estimation of binding free energies with Monte Carlo atomistic simulations and enhanced sampling
The advances in computing power have motivated the hope that computational methods can accelerate the pace of drug discovery pipelines. For this, fast, reliable and user-friendly tools are required. One of the fields that has gotten more attentions is the prediction of binding affinities. Two main problems have been identified for such methods: insufficient sampling and inaccurate models.
This thesis is focused on tackling the first problem. To this end, we present the development of efficient methods for the estimation of protein-ligand binding free energies. We have developed a protocol that combines enhanced sampling with more standard simulations methods to achieve higher efficiency. First, we run an exploratory enhanced sampling simulation, starting from the bound conformation and partially biased towards unbound poses. The we leverage the information gained from this short simulation to run, longer unbiased simulations to collect statistics.
Thanks to the modularity and automation that the protocol offers we were able to test three different methods for the long simulations: PELE, molecular dynamics and AdaptivePELE. PELE and molecular dynamics showed similar results, although PELE used less computational resources. Both seemed to work well with small protein-fragment systems or proteins with not very flexible binding sites. Both failed to accurately reproduce the binding of a kinase, the Mitogen-activated protein kinase 1 (ERK2). On the other hand, AdaptivePELE did not show a great improvement over PELE, with positive results for the Urokinase-type plasminogen activator (URO) and a clear lack of sampling for the Progesterone receptor (PR).
We demonstrated the importance of well-designed suite of test systems for the development of new methods. Through the use of a diverse benchmark of protein systems we have established the cases in which the protocol is expected to give accurate results, and which areas require further development. This benchmark consisted of four proteins, and over 30 ligands, much larger than the test systems typically used in the development of pathway-based free energy methods.
In summary, the methodology developed in this work can contribute to the drug discovery process for a limited range of protein systems. For many other, we have observed that regular unbiased simulations are not efficient enough and more sophisticated, enhanced sampling methods are required.Els grans avenços en la capacitat de computació han motivat l'esperança que els mètodes de simulacions per ordinador puguin accelerar el ritme de descobriment de nous fà rmacs. Per a què això sigui possible, es necessiten eines rà pides, acurades i fà cils d'utilitzar. Un dels problemes que han rebut més atenció és el de la predicció d'energies lliures d'unió entre proteïna i lligand. Dos grans problemes han estat identificats per a aquests mètodes: la falta de mostreig i les aproximacions dels models. Aquesta tesi està enfocada a resoldre el primer problema. Per a això, presentem el desenvolupament de mètodes eficients per a l'estimació de d'energies lliures d'unió entre proteïna i lligand. Hem desenvolupat un protocol que combina mètodes anomenats enhanced sampling amb simulació clà ssiques per a obtenir una major eficiència. Els mètodes d'enhanced sampling són una classe d'eines que apliquen algun tipus de pertorbació externa al sistema que s'està estudiant per tal d'accelerar-ne el mostreig. En el nostre protocol, primer correm una simulació exploratòria d'enhanced sampling, començant per una mostra de la unió de la proteïna i el lligand. Aquesta simulació esta parcialment esbiaixada cap a aquells estats del sistema on els dos components es troben més separats. Després utilitzem la informació obtinguda d'aquesta primera simulació més curta per a córrer una segona simulació més llarga, amb mètodes sense biaix per obtenir una estadÃstica fidedigna del sistema. Grà cies a la modularitat i el grau d'automatització que la implementació del protocol ofereix, hem pogut provar tres mètodes diferents per les simulacions llargues: PELE, dinà mica molecular i AdaptivePELE. PELE i dinà mica molecular han mostrat resultats similars, tot i que PELE utilitza menys recursos. Els dos han mostrat bons resultats en l'estudi de sistemes de fragments o amb proteïnes amb llocs d'unió poc flexibles. Però, els dos han fallat a l'hora de reproduir els resultats experimentals per a una quinasa, la Mitogen-activated protein kinase 1 (ERK2). D'altra banda, AdaptivePELE no ha mostrat una gran millora respecte a PELE, amb resultats positius per a la proteïna Urokinase-type plasminogen activator (URO) i una clara falta de mostreig per al receptor de progesterona (PR). En aquest treball hem demostrat la importà ncia d'establir un banc de proves equilibrat durant el desenvolupament de nous mètodes. Mitjançant l'ús d'un banc de proves divers hem pogut establir en quins casos es pot esperar que el protocol obtingui resultats acurats, i quines à rees necessiten més desenvolupament. El banc de proves ha consistit de quatre proteïnes i més de trenta lligands, molt més dels que comunament s'utilitzen en el desenvolupament de mètodes per a la predicció d'energies d'unió mitjançant mètodes basats en camins (pathway-based). En resum, la metodologia desenvolupada durant aquesta tesi pot contribuir al procés de recerca de nous fà rmacs per a certs tipus de sistemes de proteïnes. Per a la resta, hem observat que els mètodes de simulació no esbiaixats no són prou eficients i tècniques més sofisticades són necessà ries
Estimation of binding free energies with Monte Carlo atomistic simulations and enhanced sampling
The advances in computing power have motivated the hope that computational methods can accelerate the pace of drug discovery pipelines. For this, fast, reliable and user-friendly tools are required. One of the fields that has gotten more attentions is the prediction of binding affinities. Two main problems have been identified for such methods: insufficient sampling and inaccurate models.
This thesis is focused on tackling the first problem. To this end, we present the development of efficient methods for the estimation of protein-ligand binding free energies. We have developed a protocol that combines enhanced sampling with more standard simulations methods to achieve higher efficiency. First, we run an exploratory enhanced sampling simulation, starting from the bound conformation and partially biased towards unbound poses. The we leverage the information gained from this short simulation to run, longer unbiased simulations to collect statistics.
Thanks to the modularity and automation that the protocol offers we were able to test three different methods for the long simulations: PELE, molecular dynamics and AdaptivePELE. PELE and molecular dynamics showed similar results, although PELE used less computational resources. Both seemed to work well with small protein-fragment systems or proteins with not very flexible binding sites. Both failed to accurately reproduce the binding of a kinase, the Mitogen-activated protein kinase 1 (ERK2). On the other hand, AdaptivePELE did not show a great improvement over PELE, with positive results for the Urokinase-type plasminogen activator (URO) and a clear lack of sampling for the Progesterone receptor (PR).
We demonstrated the importance of well-designed suite of test systems for the development of new methods. Through the use of a diverse benchmark of protein systems we have established the cases in which the protocol is expected to give accurate results, and which areas require further development. This benchmark consisted of four proteins, and over 30 ligands, much larger than the test systems typically used in the development of pathway-based free energy methods.
In summary, the methodology developed in this work can contribute to the drug discovery process for a limited range of protein systems. For many other, we have observed that regular unbiased simulations are not efficient enough and more sophisticated, enhanced sampling methods are required.Els grans avenços en la capacitat de computació han motivat l'esperança que els mètodes de simulacions per ordinador puguin accelerar el ritme de descobriment de nous fà rmacs. Per a què això sigui possible, es necessiten eines rà pides, acurades i fà cils d'utilitzar. Un dels problemes que han rebut més atenció és el de la predicció d'energies lliures d'unió entre proteïna i lligand. Dos grans problemes han estat identificats per a aquests mètodes: la falta de mostreig i les aproximacions dels models. Aquesta tesi està enfocada a resoldre el primer problema. Per a això, presentem el desenvolupament de mètodes eficients per a l'estimació de d'energies lliures d'unió entre proteïna i lligand. Hem desenvolupat un protocol que combina mètodes anomenats enhanced sampling amb simulació clà ssiques per a obtenir una major eficiència. Els mètodes d'enhanced sampling són una classe d'eines que apliquen algun tipus de pertorbació externa al sistema que s'està estudiant per tal d'accelerar-ne el mostreig. En el nostre protocol, primer correm una simulació exploratòria d'enhanced sampling, començant per una mostra de la unió de la proteïna i el lligand. Aquesta simulació esta parcialment esbiaixada cap a aquells estats del sistema on els dos components es troben més separats. Després utilitzem la informació obtinguda d'aquesta primera simulació més curta per a córrer una segona simulació més llarga, amb mètodes sense biaix per obtenir una estadÃstica fidedigna del sistema. Grà cies a la modularitat i el grau d'automatització que la implementació del protocol ofereix, hem pogut provar tres mètodes diferents per les simulacions llargues: PELE, dinà mica molecular i AdaptivePELE. PELE i dinà mica molecular han mostrat resultats similars, tot i que PELE utilitza menys recursos. Els dos han mostrat bons resultats en l'estudi de sistemes de fragments o amb proteïnes amb llocs d'unió poc flexibles. Però, els dos han fallat a l'hora de reproduir els resultats experimentals per a una quinasa, la Mitogen-activated protein kinase 1 (ERK2). D'altra banda, AdaptivePELE no ha mostrat una gran millora respecte a PELE, amb resultats positius per a la proteïna Urokinase-type plasminogen activator (URO) i una clara falta de mostreig per al receptor de progesterona (PR). En aquest treball hem demostrat la importà ncia d'establir un banc de proves equilibrat durant el desenvolupament de nous mètodes. Mitjançant l'ús d'un banc de proves divers hem pogut establir en quins casos es pot esperar que el protocol obtingui resultats acurats, i quines à rees necessiten més desenvolupament. El banc de proves ha consistit de quatre proteïnes i més de trenta lligands, molt més dels que comunament s'utilitzen en el desenvolupament de mètodes per a la predicció d'energies d'unió mitjançant mètodes basats en camins (pathway-based). En resum, la metodologia desenvolupada durant aquesta tesi pot contribuir al procés de recerca de nous fà rmacs per a certs tipus de sistemes de proteïnes. Per a la resta, hem observat que els mètodes de simulació no esbiaixats no són prou eficients i tècniques més sofisticades són necessà ries.Postprint (published version
Exploring methods for developing local climate zones to support climate research
Unidad de excelencia MarÃa de Maeztu CEX2019-000940-MMeteorological and climate prediction models at the urban scale increasingly require more accurate and high-resolution data. The Local Climate Zone (LCZ) system is an initiative to standardize a classification scheme of the urban landscape, based mainly on the properties of surface structure (e.g., building, tree height, density) and surface cover (pervious vs. impervious). This approach is especially useful for studying the influence of urban morphology and fabric on the surface urban heat island (SUHI) effect and to evaluate how changes in land use and structures affect thermal regulation in the city. This article will demonstrate three different methodologies of creating LCZs: first, the World Urban Database and Access Portal Tools (WUDAPT); second, using Copernicus Urban Atlas (UA) data via a geographic information system (GIS) client directly; and third via Google Earth Engine (GEE) using Oslo, Norway as the case study. The WUDAPT and GEE methods incorporate a machine learning (random forest) procedure using Landsat 8 imagery, and offer the most precision while requiring the most time and familiarity with GIS usage and satellite imagery processing. The WUDAPT method is performed principally using multiple GIS clients and image processing tools. The GEE method is somewhat quicker to perform, with work performed entirely on Google's sites. The UA or GIS method is performed solely via a GIS client and is a conversion of pre-existing vector data to LCZ classes via scripting. This is the quickest method of the three; however, the reclassification of the vector data determines the accuracy of the LCZs produced. Finally, as an illustration of a practical use of LCZs and to further compare the results of the three methods, we map the distribution of the temperature according to the LCZs of each method, correlating to the land surface temperature (LST) from a Landsat 8 image pertaining to a heat wave episode that occurred in Oslo in 2018. These results show, in addition to a clear LCZ-LST correspondence, that the three methods produce accurate and similar results and are all viable options
Adaptive simulations, towards interactive protein-ligand modeling
Modeling the dynamic nature of protein-ligand binding with atomistic simulations is one of the main challenges in computational biophysics, with important implications in the drug design process. Although in the past few years hardware and software advances have significantly revamped the use of molecular simulations, we still lack a fast and accurate ab initio description of the binding mechanism in complex systems, available only for up-to-date techniques and requiring several hours or days of heavy computation. Such delay is one of the main limiting factors for a larger penetration of protein dynamics modeling in the pharmaceutical industry. Here we present a game-changing technology, opening up the way for fast reliable simulations of protein dynamics by combining an adaptive reinforcement learning procedure with Monte Carlo sampling in the frame of modern multi-core computational resources. We show remarkable performance in mapping the protein-ligand energy landscape, being able to reproduce the full binding mechanism in less than half an hour, or the active site induced fit in less than 5 minutes. We exemplify our method by studying diverse complex targets, including nuclear hormone receptors and GPCRs, demonstrating the potential of using the new adaptive technique in screening and lead optimization studies.We thank Drs Anders Hogner and Christoph Grebner, from AstraZeneca, and Jorge Estrada, from BSC, for fruitful discussions and feedback on the manuscript. We acknowledge the BSC-CRG-IRB Joint Research Program in Computational Biology. This work was supported by the CTQ2016-79138-R grant from the Spanish Government. D.L. acknowledges the support of SEV-2011-00067, awarded by the Spanish Government.Peer ReviewedPostprint (published version
- …