979 research outputs found
Quantum nondemolition measurement of mechanical motion quanta
The fields of opto- and electromechanics have facilitated numerous advances
in the areas of precision measurement and sensing, ultimately driving the
studies of mechanical systems into the quantum regime. To date, however, the
quantization of the mechanical motion and the associated quantum jumps between
phonon states remains elusive. For optomechanical systems, the coupling to the
environment was shown to preclude the detection of the mechanical mode
occupation, unless strong single photon optomechanical coupling is achieved.
Here, we propose and analyse an electromechanical setup, which allows to
overcome this limitation and resolve the energy levels of a mechanical
oscillator. We find that the heating of the membrane, caused by the interaction
with the environment and unwanted couplings, can be suppressed for carefully
designed electromechanical systems. The results suggest that phonon number
measurement is within reach for modern electromechanical setups.Comment: 8 pages, 5 figures plus 24 pages, 11 figures supplemental materia
Combining Anomaly and Z' Mediation of Supersymmetry Breaking
We propose a scenario in which the supersymmetry breaking effect mediated by
an additional U(1)' is comparable with that of anomaly mediation. We argue that
such a scenario can be naturally realized in a large class of models. Combining
anomaly with Z' mediation allows us to solve the tachyonic slepton problem of
the former and avoid significant fine tuning in the latter. We focus on an
NMSSM-like scenario where U(1)' gauge invariance is used to forbid a tree-level
mu term, and present concrete models, which admit successful dynamical
electroweak symmetry breaking. Gaugino masses are somewhat lighter than the
scalar masses, and the third generation squarks are lighter than the first two.
In the specific class of models under consideration, the gluino is light since
it only receives a contribution from 2-loop anomaly mediation, and it decays
dominantly into third generation quarks. Gluino production leads to distinct
LHC signals and prospects of early discovery. In addition, there is a
relatively light Z', with mass in the range of several TeV. Discovering and
studying its properties can reveal important clues about the underlying model.Comment: Minor changes: references added, typos corrected, journal versio
What traits are carried on mobile genetic elements, and why?
Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes
A Ks-band-selected catalogue of objects in the ALHAMBRA survey
The original ALHAMBRA catalogue contained over 400,000 galaxies selected using a synthetic F814W image, to the magnitude limit AB(F814W)24.5. Given the photometric redshift depth of the ALHAMBRA multiband data (=0.86) and the approximately -band selection, there is a noticeable bias against red objects at moderate redshift. We avoid this bias by creating a new catalogue selected in the band. This newly obtained catalogue is certainly shallower in terms of apparent magnitude, but deeper in terms of redshift, with a significant population of red objects at . We select objects using the band images, which reach an approximate AB magnitude limit . We generate masks and derive completeness functions to characterize the sample. We have tested the quality of the photometry and photometric redshifts using both internal and external checks. Our final catalogue includes sources down to , with a significant tail towards high redshift. We have checked that there is a large sample of objects with spectral energy distributions that correspond to that of massive, passively evolving galaxies at , reaching as far as . We have tested the possibility of combining our data with deep infrared observations at longer wavelengths, particularly Spitzer IRAC data
Preclinical Evaluation of Oncolytic Vaccinia Virus for Therapy of Canine Soft Tissue Sarcoma
Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS
First Neutrino Observations from the Sudbury Neutrino Observatory
The first neutrino observations from the Sudbury Neutrino Observatory are
presented from preliminary analyses. Based on energy, direction and location,
the data in the region of interest appear to be dominated by 8B solar
neutrinos, detected by the charged current reaction on deuterium and elastic
scattering from electrons, with very little background. Measurements of
radioactive backgrounds indicate that the measurement of all active neutrino
types via the neutral current reaction on deuterium will be possible with small
systematic uncertainties. Quantitative results for the fluxes observed with
these reactions will be provided when further calibrations have been completed.Comment: Latex, 7 pages, 10 figures, Invited paper at Neutrino 2000
Conference, Sudbury, Canada, June 16-21, 2000 to be published in the
Proceeding
Brane-World Gravity
The observable universe could be a 1+3-surface (the "brane") embedded in a
1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model
particles and fields trapped on the brane while gravity is free to access the
bulk. At least one of the \textit{d} extra spatial dimensions could be very
large relative to the Planck scale, which lowers the fundamental gravity scale,
possibly even down to the electroweak ( TeV) level. This revolutionary
picture arises in the framework of recent developments in M theory. The
1+10-dimensional M theory encompasses the known 1+9-dimensional superstring
theories, and is widely considered to be a promising potential route to quantum
gravity. At low energies, gravity is localized at the brane and general
relativity is recovered, but at high energies gravity "leaks" into the bulk,
behaving in a truly higher-dimensional way. This introduces significant changes
to gravitational dynamics and perturbations, with interesting and potentially
testable implications for high-energy astrophysics, black holes, and cosmology.
Brane-world models offer a phenomenological way to test some of the novel
predictions and corrections to general relativity that are implied by M theory.
This review analyzes the geometry, dynamics and perturbations of simple
brane-world models for cosmology and astrophysics, mainly focusing on warped
5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover
the simplest brane-world models in which 4-dimensional gravity on the brane is
modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati
models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004)
"Brane-World Gravity", 119 pages, 28 figures, the update contains new
material on RS perturbations, including full numerical solutions of
gravitational waves and scalar perturbations, on DGP models, and also on 6D
models. A published version in Living Reviews in Relativit
- âŚ