37 research outputs found

    National external quality assessment for next-generation sequencing-based diagnostics of primary immunodeficiencies

    Get PDF
    Dutch genome diagnostic centers (GDC) use next-generation sequencing (NGS)-based diagnostic applications for the diagnosis of primary immunodeficiencies (PIDs). The interpretation of genetic variants in many PIDs is complicated because of the phenotypic and genetic heterogeneity. To analyze uniformity of variant filtering, interpretation, and reporting in NGS-based diagnostics for PID, an external quality assessment was performed. Four main Dutch GDCs participated in the quality assessment. Unannotated variant call format (VCF) files of two PID patient analyses per laboratory were distributed among the four GDCs, analyzed, and interpreted (eight analyses in total). Variants that would be reported to the clinician and/or advised for further investigation were compared between the centers. A survey measuring the experiences of clinical laboratory geneticists was part of the study. Analysis of samples with confirmed diagnoses showed that all centers reported at least the variants classified as likely pathogenic (LP) or pathogenic (P) variants in all samples, except for variants in two genes (PSTPIP1 and BTK). The absence of clinical information complicated correct classification of variants. In this external quality assessment, the final interpretation and conclusions of the genetic analyses were uniform among the four participating genetic centers. Clinical and immunological data provided by a medical specialist are required to be able to draw proper conclusions from genetic data

    Recommendations for whole genome sequencing in diagnostics for rare diseases

    Get PDF
    In 2016, guidelines for diagnostic Next Generation Sequencing (NGS) have been published by EuroGentest in order to assist laboratories in the implementation and accreditation of NGS in a diagnostic setting. These guidelines mainly focused on Whole Exome Sequencing (WES) and targeted (gene panels) sequencing detecting small germline variants (Single Nucleotide Variants (SNVs) and insertions/deletions (indels)). Since then, Whole Genome Sequencing (WGS) has been increasingly introduced in the diagnosis of rare diseases as WGS allows the simultaneous detection of SNVs, Structural Variants (SVs) and other types of variants such as repeat expansions. The use of WGS in diagnostics warrants the re-evaluation and update of previously published guidelines. This work was jointly initiated by EuroGentest and the Horizon2020 project Solve-RD. Statements from the 2016 guidelines have been reviewed in the context of WGS and updated where necessary. The aim of these recommendations is primarily to list the points to consider for clinical (laboratory) geneticists, bioinformaticians, and (non-)geneticists, to provide technical advice, aid clinical decision-making and the reporting of the results

    A novel pathogenic MLH1 missense mutation, c.112A > C, p.Asn38His, in six families with Lynch syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An unclassified variant (UV) in exon 1 of the <it>MLH1 </it>gene, c.112A > C, p.Asn38His, was found in six families who meet diagnostic criteria for Lynch syndrome. The pathogenicity of this variant was unknown. We aim to elucidate the pathogenicity of this <it>MLH1 </it>variant in order to counsel these families adequately and to enable predictive testing in healthy at-risk relatives.</p> <p>Methods</p> <p>We studied clinical data, microsatellite instability and immunohistochemical staining of MMR proteins, and performed genealogy, haplotype analysis and DNA testing of control samples.</p> <p>Results</p> <p>The UV showed co-segregation with the disease in all families. All investigated tumors showed a microsatellite instable pattern. Immunohistochemical data were variable among tested tumors. Three families had a common ancestor and all families originated from the same geographical area in The Netherlands. Haplotype analysis showed a common haplotype in all six families.</p> <p>Conclusions</p> <p>We conclude that the <it>MLH1 </it>variant is a pathogenic mutation and genealogy and haplotype analysis results strongly suggest that it is a Dutch founder mutation. Our findings imply that predictive testing can be offered to healthy family members. The immunohistochemical data of MMR protein expression show that interpreting these results in case of a missense mutation should be done with caution.</p

    Serum proteomics reveals hemophagocytic lymphohistiocytosis-like phenotype in a subset of patients with multisystem inflammatory syndrome in children

    Get PDF
    Children with Multisystem Inflammatory Syndrome in Children (MIS-C) can present with thrombocytopenia, which is a key feature of hemophagocytic lymphohistiocytosis (HLH). We hypothesized that thrombocytopenic MIS-C patients have more features of HLH. Clinical characteristics and routine laboratory parameters were collected from 228 MIS-C patients, of whom 85 (37%) were thrombocytopenic. Thrombocytopenic patients had increased ferritin levels; reduced leukocyte subsets; and elevated levels of ASAT and ALAT. Soluble IL-2RA was higher in thrombocytopenic children than in non-thrombocytopenic children. T-cell activation, TNF-alpha and IFN-gamma signaling markers were inversely correlated with thrombocyte levels, consistent with a more pronounced cytokine storm syndrome. Thrombocytopenia was not associated with severity of MIS-C and no pathogenic variants were identified in HLH-related genes. This suggests that thrombocytopenia in MIS-C is not a feature of a more severe disease phenotype, but the consequence of a distinct hyperinflammatory immunopathological process in a subset of children.</p

    Classification criteria for autoinflammatory recurrent fevers.

    Get PDF
    BACKGROUND: Different diagnostic and classification criteria are available for hereditary recurrent fevers (HRF)-familial Mediterranean fever (FMF), tumour necrosis factor receptor-associated periodic fever syndrome (TRAPS), mevalonate kinase deficiency (MKD) and cryopyrin-associated periodic syndromes (CAPS)-and for the non-hereditary, periodic fever, aphthosis, pharyngitis and adenitis (PFAPA). We aimed to develop and validate new evidence-based classification criteria for HRF/PFAPA. METHODS: Step 1: selection of clinical, laboratory and genetic candidate variables; step 2: classification of 360 random patients from the Eurofever Registry by a panel of 25 clinicians and 8 geneticists blinded to patients\u27 diagnosis (consensus ≥80%); step 3: statistical analysis for the selection of the best candidate classification criteria; step 4: nominal group technique consensus conference with 33 panellists for the discussion and selection of the final classification criteria; step 5: cross-sectional validation of the novel criteria. RESULTS: The panellists achieved consensus to classify 281 of 360 (78%) patients (32 CAPS, 36 FMF, 56 MKD, 37 PFAPA, 39 TRAPS, 81 undefined recurrent fever). Consensus was reached for two sets of criteria for each HRF, one including genetic and clinical variables, the other with clinical variables only, plus new criteria for PFAPA. The four HRF criteria demonstrated sensitivity of 0.94-1 and specificity of 0.95-1; for PFAPA, criteria sensitivity and specificity were 0.97 and 0.93, respectively. Validation of these criteria in an independent data set of 1018 patients shows a high accuracy (from 0.81 to 0.98). CONCLUSION: Eurofever proposes a novel set of validated classification criteria for HRF and PFAPA with high sensitivity and specificity

    The Human Phenotype Ontology in 2024: phenotypes around the world.

    Get PDF
    The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs

    Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome

    Get PDF
    Purpose: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. Methods: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. Results: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. Conclusion: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome

    Twist exome capture allows for lower average sequence coverage in clinical exome sequencing

    Get PDF
    Background Exome and genome sequencing are the predominant techniques in the diagnosis and research of genetic disorders. Sufficient, uniform and reproducible/consistent sequence coverage is a main determinant for the sensitivity to detect single-nucleotide (SNVs) and copy number variants (CNVs). Here we compared the ability to obtain comprehensive exome coverage for recent exome capture kits and genome sequencing techniques. Results We compared three different widely used enrichment kits (Agilent SureSelect Human All Exon V5, Agilent SureSelect Human All Exon V7 and Twist Bioscience) as well as short-read and long-read WGS. We show that the Twist exome capture significantly improves complete coverage and coverage uniformity across coding regions compared to other exome capture kits. Twist performance is comparable to that of both short- and long-read whole genome sequencing. Additionally, we show that even at a reduced average coverage of 70× there is only minimal loss in sensitivity for SNV and CNV detection. Conclusion We conclude that exome sequencing with Twist represents a significant improvement and could be performed at lower sequence coverage compared to other exome capture techniques

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock
    corecore