2,543 research outputs found

    Total Value of Phosphorus Recovery

    Get PDF
    Phosphorus (P) is a critical, geographically concentrated, nonrenewable resource necessary to support global food production. In excess (e.g., due to runoff or wastewater discharges), P is also a primary cause of eutrophication. To reconcile the simultaneous shortage and overabundance of P, lost P flows must be recovered and reused, alongside improvements in P-use efficiency. While this motivation is increasingly being recognized, little P recovery is practiced today, as recovered P generally cannot compete with the relatively low cost of mined P. Therefore, P is often captured to prevent its release into the environment without beneficial recovery and reuse. However, additional incentives for P recovery emerge when accounting for the total value of P recovery. This article provides a comprehensive overview of the range of benefits of recovering P from waste streams, i.e., the total value of recovering P. This approach accounts for P products, as well as other assets that are associated with P and can be recovered in parallel, such as energy, nitrogen, metals and minerals, and water. Additionally, P recovery provides valuable services to society and the environment by protecting and improving environmental quality, enhancing efficiency of waste treatment facilities, and improving food security and social equity. The needs to make P recovery a reality are also discussed, including business models, bottlenecks, and policy and education strategies

    Variation of mohair staple length across Angora goat fleeces : implications for animal selection and fleece evaluation

    Full text link
    The present study aimed to determine how the average mohair staple length (SL) differences between nine sampling sites vary between sex and flock, to identify differences in SL variability between sampling sites as a result of between-animal and between-sire variability and to determine SL correlations between sampling sites in between-animal and between-sire variability. Australian Angora goats (n=301) from two farms in southern Australia were sampled at 12 and 18 months of age at nine sites (mid side, belly, brisket, hind flank, hip, hock, mid back, neck and shoulder). Staples were taken prior to shearing at skin level and stretched SL determined. For each shearing, differences in SL between sampling sites, how these differences were affected by farm, sex and sire, and the covariance between sites for sire and individual animal effects were investigated by restricted maximum likelihood (REML) analyses. The median mid-side SL at 12 and 18 months of age was 110 and 130 mm, respectively, but the actual range in mid-side SL was 65&ndash;165 mm. There was an anterior&ndash;posterior decline in SL with the hock being particularly short. There was no evidence that the between-site correlation of the sire effects differed from 1, indicating that genetic selection for SL at one site will be reflected in SL over the whole fleece. However, low heritabilities of SL at the hock, belly and brisket or at any site at 12 months of age were obtained. There was more variability between sites than between sires, but the between-animal variation was greater. The hip and mid-back sites can be recommended for within-flock (culling) and genetic selection for SL due to their low sampling variability, moderate heritability and ease of location. <br /

    Ruler Arrays Reveal Haploid Genomic Structural Variation

    Get PDF
    Despite the known relevance of genomic structural variants to pathogen behavior, cancer, development, and evolution, certain repeat based structural variants may evade detection by existing high-throughput techniques. Here, we present ruler arrays, a technique to detect genomic structural variants including insertions and deletions (indels), duplications, and translocations. A ruler array exploits DNA polymerase’s processivity to detect physical distances between defined genomic sequences regardless of the intervening sequence. The method combines a sample preparation protocol, tiling genomic microarrays, and a new computational analysis. The analysis of ruler array data from two genomic samples enables the identification of structural variation between the samples. In an empirical test between two closely related haploid strains of yeast ruler arrays detected 78% of the structural variants larger than 100 bp.United States. National Institutes of Health (Grant R01GM069676

    Spontaneous mutation rate is a plastic trait associated with population density across domains of life

    Get PDF
    Rates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium. It is unknown how widespread this association is, whether it varies among organisms, and what molecular mechanisms of mutagenesis or repair are required for this mutation-rate plasticity. Here, we address all 3 questions. We identify a strong negative association between mutation rate and population density across 70 years of published literature, comprising hundreds of mutation rates estimated using phenotypic markers of mutation (fluctuation tests) from all domains of life and viruses. We test this relationship experimentally, determining that there is indeed density-associated mutation-rate plasticity (DAMP) at multiple loci in both eukaryotes and bacteria, with up to 23-fold lower mutation rates at higher population densities. We find that the degree of plasticity varies, even among closely related organisms. Nonetheless, in each domain tested, DAMP requires proteins scavenging the mutagenic oxidised nucleotide 8-oxo-dGTP. This implies that phenotypic markers give a more precise view of mutation rate than previously believed: having accounted for other known factors affecting mutation rate, controlling for population density can reduce variation in mutation-rate estimates by 93%. Widespread DAMP, which we manipulate genetically in disparate organisms, also provides a novel trait to use in the fight against the evolution of antimicrobial resistance. Such a prevalent environmental association and conserved mechanism suggest that mutation has varied plastically with population density since the early origins of life

    Probing theories of gravity with phase space-inferred potentials of galaxy clusters

    Get PDF
    Modified theories of gravity provide us with a unique opportunity to generate innovative tests of gravity. In Chameleon f(R) gravity, the gravitational potential differs from the weak-field limit of general relativity (GR) in a mass dependent way. We develop a probe of gravity which compares high mass clusters, where Chameleon effects are weak, to low mass clusters, where the effects can be strong. We utilize the escape velocity edges in the radius/velocity phase space to infer the gravitational potential profiles on scales of 0.3–1 virial radii. We show that the escape edges of low mass clusters are enhanced compared to GR, where the magnitude of the difference depends on the background field value |fR0ÂŻÂŻÂŻÂŻÂŻ|. We validate our probe using N-body simulations and simulated light cone galaxy data. For a Dark Energy Spectroscopic Instrument Bright Galaxy Sample, including observational systematics, projection effects, and cosmic variance, our test can differentiate between GR and Chameleon f(R) gravity models, |fR0ÂŻÂŻÂŻÂŻÂŻ|=4×10−6 (2×10−6) at >5σ (>2σ), more than an order of magnitude better than current cluster-scale constraints

    Ovonic nickel metal hydride batteries for space applications

    Get PDF
    Ovonic nickel-metal hydride (NiMH) rechargeable batteries are easily adaptable to a variety of applications. Small consumer NiMH cells were developed and are now being manufactured by licensees throughout the world. This technology was successfully scaled up in larger prismatic cells aimed at electric vehicle applications. Sealed cells aimed at satellite power applications were also built and cycle tested by OBC and other outside agencies. Prototype batteries with high specific energy (over 80 Wh/kg), high energy density (245 Wh/L), and excellent power capability (400 W/kg) were produced. Ovonic NiMH batteries demonstrated an excellent cycle life of over 10,000 cycles at 30 percent DOD. Presently, Ovonic Battery Company is working on an advanced version of this battery for space applications as part of an SBIR contract from NASA
    • 

    corecore