153 research outputs found

    Assessing Working Memory in Mild Cognitive Impairment with Serial Order Recall.

    Get PDF
    BACKGROUND: Working memory (WM) is often assessed with serial order tests such as repeating digits backward. In prior dementia research using the Backward Digit Span Test (BDT), only aggregate test performance was examined. OBJECTIVE: The current research tallied primacy/recency effects, out-of-sequence transposition errors, perseverations, and omissions to assess WM deficits in patients with mild cognitive impairment (MCI). METHODS: Memory clinic patients (n = 66) were classified into three groups: single domain amnestic MCI (aMCI), combined mixed domain/dysexecutive MCI (mixed/dys MCI), and non-MCI where patients did not meet criteria for MCI. Serial order/WM ability was assessed by asking participants to repeat 7 trials of five digits backwards. Serial order position accuracy, transposition errors, perseverations, and omission errors were tallied. RESULTS: A 3 (group)×5 (serial position) repeated measures ANOVA yielded a significant group×trial interaction. Follow-up analyses found attenuation of the recency effect for mixed/dys MCI patients. Mixed/dys MCI patients scored lower than non-MCI patients for serial position 3 (p \u3c 0.003) serial position 4 (p \u3c 0.002); and lower than both group for serial position 5 (recency; p \u3c 0.002). Mixed/dys MCI patients also produced more transposition errors than both groups (p \u3c 0.010); and more omissions (p \u3c 0.020), and perseverations errors (p \u3c 0.018) than non-MCI patients. CONCLUSIONS: The attenuation of a recency effect using serial order parameters obtained from the BDT may provide a useful operational definition as well as additional diagnostic information regarding working memory deficits in MCI

    Textiloma: a case of foreign body mimicking a spinal mass

    Get PDF
    Items such as cotton or gauze pads can be mistakenly left behind during operations. Such foreign materials (called textilomas or gossypibomas) cause foreign body reaction in the surrounding tissue. The complications caused by these foreign bodies are well known, but cases are rarely published because of medico-legal implications. Some textilomas cause infection or abscess formation in the early stage, whereas others remain clinically silent for many years. Here, we describe a case of textiloma in which the patient presented with low-back pain 4 years after lumbar discectomy. Imaging revealed an abcess-like mass in the lumbar epidural space

    The Global Dominance of European Competition Law Over American Antitrust Law

    Get PDF
    The world’s biggest consumer markets – the European Union and the United States – have adopted different approaches to regulating competition. This has not only put the EU and US at odds in high-profile investigations of anticompetitive conduct, but also made them race to spread their regulatory models. Using a novel dataset of competition statutes, we investigate this race to influence the world’s regulatory landscape and find that the EU’s competition laws have been more widely emulated than the US’s competition laws. We then argue that both “push” and “pull” factors explain the appeal of the EU’s competition regime: the EU actively promotes its model through preferential trade agreements and has an administrative template that is easy to emulate. As EU and US regulators offer competing regulatory models in domains as diverse as privacy, finance, and environmental protection, our study sheds light on how global regulatory races are fought and won

    Experimental effects of climate messages vary geographically

    Get PDF
    Social science scholars routinely evaluate the efficacy of diverse climate frames using local convenience or nationally representative samples. For example, previous research has focused on communicating the scientific consensus on climate change, which has been identified as a ‘gateway’ cognition to other key beliefs about the issue6,7,8,9. Importantly, although these efforts reveal average public responsiveness to particular climate frames, they do not describe variation in message effectiveness at the spatial and political scales relevant for climate policymaking. Here we use a small-area estimation method to map geographical variation in public responsiveness to information about the scientific consensus as part of a large-scale randomized national experiment (n = 6,301). Our survey experiment finds that, on average, public perception of the consensus increases by 16 percentage points after message exposure. However, substantial spatial variation exists across the United States at state and local scales. Crucially, responsiveness is highest in more conservative parts of the country, leading to national convergence in perceptions of the climate science consensus across diverse political geographies. These findings not only advance a geographical understanding of how the public engages with information about scientific agreement, but will also prove useful for policymakers, practitioners and scientists engaged in climate change mitigation and adaptation.MacArhur Foundation, Energy Foundatio

    Genome biology of the paleotetraploid perennial biomass crop Miscanthus

    Get PDF
    Miscanthus is a perennial wild grass that is of global importance for paper production, roofing, horticultural plantings, and an emerging highly productive temperate biomass crop. We report a chromosome-scale assembly of the paleotetraploid M. sinensis genome, providing a resource for Miscanthus that links its chromosomes to the related diploid Sorghum and complex polyploid sugarcanes. The asymmetric distribution of transposons across the two homoeologous subgenomes proves Miscanthus paleo-allotetraploidy and identifies several balanced reciprocal homoeologous exchanges. Analysis of M. sinensis and M. sacchariflorus populations demonstrates extensive interspecific admixture and hybridization, and documents the origin of the highly productive triploid bioenergy crop M. x giganteus. Transcriptional profiling of leaves, stem, and rhizomes over growing seasons provides insight into rhizome development and nutrient recycling, processes critical for sustainable biomass accumulation in a perennial temperate grass. The Miscanthus genome expands the power of comparative genomics to understand traits of importance to Andropogoneae grasses

    Consequences of considering carbon–nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 21 (2008): 3776–3796, doi:10.1175/2008JCLI2038.1.The impact of carbon–nitrogen dynamics in terrestrial ecosystems on the interaction between the carbon cycle and climate is studied using an earth system model of intermediate complexity, the MIT Integrated Global Systems Model (IGSM). Numerical simulations were carried out with two versions of the IGSM’s Terrestrial Ecosystems Model, one with and one without carbon–nitrogen dynamics. Simulations show that consideration of carbon–nitrogen interactions not only limits the effect of CO2 fertilization but also changes the sign of the feedback between the climate and terrestrial carbon cycle. In the absence of carbon–nitrogen interactions, surface warming significantly reduces carbon sequestration in both vegetation and soil by increasing respiration and decomposition (a positive feedback). If plant carbon uptake, however, is assumed to be nitrogen limited, an increase in decomposition leads to an increase in nitrogen availability stimulating plant growth. The resulting increase in carbon uptake by vegetation exceeds carbon loss from the soil, leading to enhanced carbon sequestration (a negative feedback). Under very strong surface warming, however, terrestrial ecosystems become a carbon source whether or not carbon–nitrogen interactions are considered. Overall, for small or moderate increases in surface temperatures, consideration of carbon–nitrogen interactions result in a larger increase in atmospheric CO2 concentration in the simulations with prescribed carbon emissions. This suggests that models that ignore terrestrial carbon–nitrogen dynamics will underestimate reductions in carbon emissions required to achieve atmospheric CO2 stabilization at a given level. At the same time, compensation between climate-related changes in the terrestrial and oceanic carbon uptakes significantly reduces uncertainty in projected CO2 concentration

    Quasispecies Theory and the Behavior of RNA Viruses

    Get PDF
    A large number of medically important viruses, including HIV, hepatitis C virus, and influenza, have RNA genomes. These viruses replicate with extremely high mutation rates and exhibit significant genetic diversity. This diversity allows a viral population to rapidly adapt to dynamic environments and evolve resistance to vaccines and antiviral drugs. For the last 30 years, quasispecies theory has provided a population-based framework for understanding RNA viral evolution. A quasispecies is a cloud of diverse variants that are genetically linked through mutation, interact cooperatively on a functional level, and collectively contribute to the characteristics of the population. Many predictions of quasispecies theory run counter to traditional views of microbial behavior and evolution and have profound implications for our understanding of viral disease. Here, we discuss basic principles of quasispecies theory and describe its relevance for our understanding of viral fitness, virulence, and antiviral therapeutic strategy

    Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data

    Get PDF
    The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future PET scanners
    corecore