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Social science scholars routinely evaluate the efficacy of diverse climate frames

using local convenience or nationally representative samples1–5. For example, prior

research has focused on communicating the scientific consensus on climate change,

which has been identified as a “gateway” cognition to other key beliefs about the

issue6–9. Importantly, although these efforts reveal average public responsiveness

to particular climate frames, they do not describe variation in message effective-

ness at the spatial and political scales relevant for climate policymaking. Here

we use a small-area estimation method to map geographic variation in public re-

sponsiveness to information about the scientific consensus as part of a large-scale

randomized national experiment (N = 6301). Our survey experiment finds that,

on average, public perception of the consensus increases by 16 percentage points

after message exposure. Yet, substantial spatial variation exists across the United

States at state and local scales. Crucially, responsiveness is highest in more con-

servative parts of the country, leading to national convergence in perceptions of

the climate science consensus across diverse political geographies. These findings

not only advance a geographical understanding of how the public engages with in-

formation about scientific agreement, but will also prove useful for policymakers,

practitioners, and scientists engaged in climate change mitigation and adaptation.
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Climate change adaptation and mitigation efforts require behavioral and policy responses

across diverse scales, from municipal governments to national policy. As a result, scientists,

policy-makers, and practitioners must all communicate climate science to diverse decision makers

and publics. Existing literature has analyzed the efficacy of different climate change communica-

tion strategies,1,4 ranging from a focus on public health and national security3 to increasing the

salience of local climate change impacts5 and comparing the benefits of gain versus loss frames2.

Our study engages specifically with a growing debate about the value of communicating infor-

mation about the level of scientific agreement on human-caused climate change.

Although a strong consensus exists among climate scientists that climate change is real,

human-caused, and poses substantial economic and social threats to human welfare10–12, public

beliefs about anthropogenic climate change significantly lag this scientific assessment. For exam-

ple, despite the fact that over 97 percent of climate scientists have concluded that human-caused

climate change is happening,10,13,14 only 11 percent of the American public correctly estimate

the scientific consensus on climate change as higher than 90 percent15. While it is often assumed

that conservatives and liberals have a similar understanding of the issue, selective exposure to

ideological content likely contributes to a sharp divergence in awareness, as liberals are about

five times more familiar with the scientific consensus than conservatives15.

Uneven public understanding of the scientific consensus has been linked to systematic disin-

formation campaigns by carbon-intensive economic actors. While these actors privately accepted

the severity of the climate threat as early as the 1980s, they mobilized publicly to undermine

public understanding of climate science to stall climate policy reforms16. Disinformation efforts

were facilitated by ‘balancing’ media norms that give equal voice to climate skeptics in climate

news stories despite their marginal position within scientific debate17,18. Public understand-

ing of climate science has also been undermined by a general increase in ideological attacks

against science19,20. Recent experimental evidence has found that false balance and real-world

misinformation about the degree of expert consensus can directly undermine public opinion21,22.

In fact, previous scholarship has linked misunderstanding of the climate change scientific

consensus to reduced levels of belief in climate change7–9, while experimental studies find that

even slight exposure to scientific dissent can reduce public acceptance of environmental risks and

undermine support for environmental policy23. Because people often rely on consensus cues to

form judgments about socio-political issues, recent experimental work has framed beliefs about

the scientific consensus as a potential gateway cognition to public acceptance of a range of issues,

including climate change6,22, vaccines24 and GMOs25.
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In particular, the Gateway Belief Model (GBM)7 offers a dual-processing account of judgment

formation where public opinion on climate change, in both cognitive (belief) and affective (worry)

terms is influenced by perceptions of normative agreement among an influential referent group

(domain experts). In other words, correcting inaccurate beliefs about the scientific norm on

climate change may provide an effective leverage point to enhance public understanding of and

concern about anthropogenic climate change. Also, given the degree of political polarization on

the issue26, preemptively warning people about the existence of a scientific consensus has shown

to be useful in limiting directional motivated reasoning22,27.

Critiques of this approach include the potential for belief polarization28 and the observation

that mass communication strategies which attempt to de-bias public perceptions about the

scientific consensus do not necessarily engage with the larger socio-political context in which

public opinions about contested societal issues are formed29. Thus, crucially, this emerging

literature has not considered important potential geographic variation in public responsiveness

to information about the scientific consensus resulting from varying socio-political contexts.

Accordingly, in this article, we explore treatment effect heterogeneity across diverse political

geographies. The development of more efficient approaches to identify treatment effect hetero-

geneity has become a growing priority for social science scholars, including both parametric and

non-parametric forms of response surface modeling30–33. However, to date, this research commu-

nity has focused primarily on estimating effects among demographic (e.g., gender) or ideological

(e.g., partisan) subpopulations. By contrast, efforts to model geographically-bounded hetero-

geneous effects remain rare, despite significant theoretical and substantive relevance to many

contemporary social and political debates.

Indeed, much research shows that people in different geographic regions also differ psycho-

logically in important and meaningful ways34. For example, the emerging field of “geographical

psychology” takes a cross-disciplinary perspective to understanding how important differences in

social, economic, political, and climatic factors interact to produce psychological phenomena35.

In particular, people often choose to live in communities with ideological worldviews similar

to their own36. Accordingly, investigating spatial variation in public responsiveness to climate

change communication frames provides a unique opportunity to advance the social and behav-

ioral science literature on this subject, particularly by exploring how well a given message is

likely going to resonate with an audience depending on their unique geographic characteristics.

Prior studies on this topic have almost all been conducted with either convenience samples

(for example, student or online panels) or with nationally representative samples. As such, they
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reveal something about the average responsiveness to climate messages. Formally, they iden-

tify sample average treatment effects by comparing aggregated treatment and control outcomes

across an experimental sample. Yet, substantial variation in climate opinions and preferences

exist at subnational and local scales37–39. We should expect similar heterogeneity in public

responsiveness to climate change consensus messages at the geographic scales relevant to U.S.

climate policymaking. However, this policy-relevant heterogeneity remains obscured by existing

methods used to analyze climate change communication experiments.

Here we use multilevel regression as an alternative parametric approach for response surface

modeling of experimental message effects. Multilevel regression and post-stratification have

been widely used for small area estimation, modeling the state and local distribution of public

opinion on such diverse topics as gay rights40, health care41, and climate change37–39. Multilevel

regression is used in small area estimation because the method allows one to borrow information

from other geographic units in estimating the outcome for any particular unit. As detailed

in our Methods section, we use two separate multilevel regressions to model the distribution

of the outcome (i.e., change in belief in the scientific consensus) under treatment and control

conditions conditional on a set of demographic and geographic predictors. Next, we use these

two models to predict the potential outcomes under treatment and control for each stratum,

or category of respondent. To obtain each estimate, we post-stratify the predicted differences

between treatment and control changes by computing the weighted average treatment effect

across the strata in the geographic area. The Methods section provides full details on our

experimental design and statistical models.

We perform our analysis using a large national survey experiment conducted in August

2015 (N=6301) to measure the impact of a message about the scientific consensus on human-

caused climate change on public opinion. In our experiment, we introduced three sections of

questions about popular media topics (of equal length) to mask the real purpose of the study.

One of these topics was climate change and included six questions about respondents’ climate

change attitudes. The most crucial of these six was a measure of subjects’ perception of the

scientific consensus. Using a slider scale from 0 to 100, respondents answered the following

question: “To the best of your knowledge, what percentage of climate scientists have concluded

that human-caused global warming is happening?” All respondents also provided demographic

characteristics, such as gender, race, education, age, and geographic location.

Next, respondents were randomly assigned to either a treatment or control condition. Re-

spondents in the treatment condition read a statement that said; “97% of climate scientists have
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concluded that human-caused global warming is happening.” In contrast, respondents in the

control condition performed a short cognitive exercise unrelated to climate change. After an-

swering several distracting scenarios and questions, respondents were again asked the same set of

questions concerning climate change. Because we focus on estimating the effect of the scientific

consensus frame, our main outcome of interest is the pre-post change in subjects’ belief about

the scientific consensus.

Exposing the survey respondents to the message about the scientific consensus increases

their perception of the scientific norm by 16.2 percentage points on a 100-point scale. However,

our small area estimation suggests this national sample average responsiveness masks substantial

heterogeneity at state and local levels. Figure 1 maps this variation at the U.S. state level. At this

level, California and the District of Columbia anchor the low end of the range, with effect sizes of

12.2 and 12.4 percentage points, respectively. At the upper range limit, response averages in West

Virginia and Wyoming increased by 24.1 and 22.7 percentage points respectively. Figure 2 shows

the top ten and bottom ten states’ responsiveness levels, with confidence intervals to emphasize

the range and uncertainty of state-level responsiveness across the country. In Supplementary

Figure 3, we report validation efforts that increase confidence in the accuracy of our treatment

effect estimates.

We find the largest messaging effects in states with the lowest pre-treatment belief in the

scientific consensus, such as West Virginia, Wyoming, and North Dakota. States with more pro-

climate publics (e.g., California, Hawaii) have some of the lowest effect sizes because respondent’s

initial estimates of the consensus were substantially higher than those in more conservative states,

as reported in Figure 3. Our experimental message might have produced a ceiling effect in public

perception of the consensus. Post-treatment, state outcomes in the treatment group ranged from

81 to 87 percent, suggesting our treatment led to a national convergence in public perception.

This finding is consistent with prior work that has shown that communicating expert consensus

can reduce belief and group polarization6,7,22,27,42,43.

Figure 4 maps responsiveness at the congressional district level. We see similar patterns in

variation at the state level, with some of the highest responsiveness levels in the Midwest, Ap-

palachia and the American South. We see particularly strong messaging effects in rural districts.

Absent the capacity to measure and estimate local, geographically-specific treatment effects, we

could not have comprehensively evaluated whether national findings of the effectiveness of the

message were driven by people living in places that are traditionally perceived as more climate-

friendly. Instead, we find that the strongest effects of a message about the scientific consensus
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10 12 14 16 18 20 22 24 26

Change in Belief in the Scientific Consensus (in percentage points)

Change in Belief in the Scientific Consensus
(Difference in Change Between Treatment and Control)

Figure 1: Experimental treatment effect sizes for each US State. Difference in change in belief in
the scientific consensus (in percentage points) between the treatment group who were exposed
to a message about the consensus on human-caused climate change, and the control group.
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Figure 2: Change in belief in the scientific consensus on climate change for the ten states with
the largest estimated treatment effects (top panel) and the ten states with the smallest estimated
treatment effects (bottom panel). Error bars display 95 percent prediction intervals.
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Figure 3: Experimental treatment effect ordered by pre-treatment estimates of beliefs in the
scientific consensus. The dots represent the estimates of pre-treatment belief in the scientific
consensus. The heights of vertical lines represent the estimated treatment effects.
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(Difference in Change Between Treatment and Control)

Figure 4: Experimental treatment effect sizes for each US Congressional district. Difference in
change in belief in the scientific consensus (in percentage points) between the treatment group
who were exposed to a message about the consensus on human-caused climate change, and the
control group.
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on climate change are possible where the existing understanding of the consensus is low.

The existence of such ceiling effects may prove encouraging for climate change communica-

tors and educators. They suggest that in parts of the United States where smaller proportions

of the population are concerned about climate change, larger segments of the population may be

responsive to information about the strong scientific consensus on climate change. Importantly,

although low initial consensus estimates indicate the potential for attitude change, this in itself

does not imply that individuals will also change their attitudes, especially in light of partisan mo-

tivated reasoning28,44. One potential explanation for the finding that some of the largest effects

are observed in more conservative areas of the United States is selective exposure to ideologi-

cal content45. For example, ideologically-segregated geographies can facilitate “filter bubbles”36

that may inhibit widespread awareness about the scientific consensus. Other research has found

that conservatives value conformity to consensus and authority more than liberals46. For exam-

ple, residents in conservative “red states” score disproportionately high on conscientiousness47,

a personality trait associated with respect for conformity and authority48. The observed spatial

clustering (Figures 1 and 4) is broadly consistent with findings suggesting that residents in the

Mountain and West North Central States are particularly high in conscientiousness34.

However, geographic patterns in public responsiveness do not appear to be solely driven by

variation in political orientation. For example, in pairs of state-by-state comparisons, we estimate

higher responsiveness in the more liberal-leaning state, such as between Minnesota (higher, more

liberal) and Wisconsin (lower, more conservative), or between Oregon (higher, more liberal) and

Nevada (lower, more conservative). At the regional level, we also do not find major differences in

responsiveness between the Northeastern and Southeastern U.S., two regions that have exhibited

sharply different voting patterns in recent elections. These patterns suggest that research should

explore additional factors that may drive geographically varying responsiveness to the scientific

consensus message, such as differences in education, media exposure, or socio-demographics.

More generally, our results demonstrate the importance of small area estimation of treatment

effects for the study of political, risk, and science communication. Our approach can be extended

to examine other types of treatment heterogeneity and to any national experiment with sufficient

sample size. It offers scholars the option to extend familiar small area estimation methods to

experimental research. Our results also add to the emerging body of behavioral science research

exploring geographical variation in basic human psychology and communication35.

Building durable political coalitions for national climate reforms within representative democ-

racies requires coordinated support across diverse electoral geographies. Educators may use

9



this technique to efficiently target education campaigns as they raise awareness of the risks of

human-caused climate change. Estimating treatment effects for local geographies allows for a

better understanding of the nature and distribution of public beliefs about climate change and

provides high-quality data on the mass publics at scales relevant for climate change mitigation

and adaptation decision-making.
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Methods

We use multilevel regression and post-stratification (MRP) to estimate treatment effects in small

areas. In prior work, scholars have typically used MRP to estimate small-area descriptive statis-

tics, not experimental treatment effects; furthermore, researchers have focused on estimating

individual-level heterogeneous treatment effects instead of geographic-level ones. Our method

uses multilevel regressions to model the response surface associated with a messaging treatment;

combining our modeling with post-stratification allows us to estimate message effects at vari-

ous geographic levels (e.g., state and congressional districts). Our method has applications to

other studies in which researchers conduct large-scale national experiments and seek to estimate

treatment effects for smaller sub-national units. The Methods section provides details about

our sample, experimental design, and method of analysis. The results of additional analysis are

included in the Supplementary Information.

Sample

We conducted a national survey experiment in August 2015 (N=6301) to measure the effect

of the consensus message on public perceptions of the scientific consensus on human-caused

climate change. The experiment was conducted on a large and diverse national sample obtained

from Qualtrics LLC. The sample relied on quotas broadly representative of the U.S. population,

including gender, age, region, education, ethnicity, and political party. The treatment and

control groups were also each balanced on the same key U.S. socio-demographic and geographic

characteristics. We report the demographic characteristics of survey respondents and balance

tests in Supplementary Information Tables 1 and 2.

Supplementary Table 1 summarizes the demographic characteristics of the survey respon-

dents. As the table notes, the control group and treatment group are nearly identical on all

demographic characteristics. Furthermore, when we regress treatment assignment on all of the

available demographic characteristics, we find that none of those variables individually predict

treatment assignment nor do they jointly predict treatment assignment (see Supplementary Ta-

ble 2).
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Experimental Design and Procedure

We employed a mixed factorial design measuring pre-post belief change in both the treatment

and control groups. In the first part of the survey, respondents were asked to report on various

demographic characteristics. Participants were then presented with three randomized sections

of questions about popular media topics (of equal length) to mask the true purpose of the study,

including six questions about public attitudes toward climate change. The most crucial of these

six is a pre-treatment measure of subjects’ attitude about the scientific consensus. Using a slider

scale from 0 to 100, respondents answered the following question: “To the best of your knowl-

edge, what percentage of climate scientists have concluded that human-caused global warming

is happening?” Next, respondents were told that the researchers maintain a large database

of media statements and that one media statement would be selected at random for further

consideration (the treatment statement was always the same message about climate change).

Respondents were randomly assigned to either a treatment or control condition. Respondents

in the treatment condition read a statement that said; “97% of climate scientists have concluded

that human-caused global warming is happening.” In contrast, respondents in the control con-

dition performed a short cognitive exercise unrelated to climate change. After answering several

distraction-scenarios and questions (about the latest Star Wars movie), respondents were again

asked the six questions concerning climate change. The main outcome of interest is the change

in subjects’ belief about the scientific consensus (post-treatment minus pre-treatment measure).

Subjects were asked the following question: “To the best of your knowledge, what percentage

of climate scientists have concluded that human-caused global warming is happening?” Response

options were given on a continuum (slider-scale), ranging from 0 to 100 percent of climate

scientists have concluded that human-caused global warming is happening. The research received

ethical approval from the Yale University Institutional Review Board and informed consent was

obtained from all participants.

Multilevel Regression and Post-Stratification

We estimate the treatment effect of the message for each state and congressional district by

adapting multilevel regression with post-stratification (MRP), a common tool for descriptive

inferences in small geographic units using national survey data. Although multilevel regression

estimators are biased, they increase the accuracy of small-area estimates in terms of mean squared

error by reducing the variance of the estimates49. In general, multilevel regression shrinks group-

level estimates towards the average across all groups, or towards the group-level estimate from a
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regression model that completely pools data from across groups (i.e., one that does not include

group-level random effects). Shrinkage is greater for groups with fewer observations or groups

that have smaller standard deviations in the outcome variable.

For each experimental condition, multilevel regression is used first to model the distribution of

outcomes conditional on individual and geography-level covariates. Our model includes random

effects for 1) race, 2) education, 3) gender, 4) the interaction between race, education, and gender,

5) state, and 6) region; as well as fixed effects for state-level political attitudes, behavior, and

per-capita CO2 emissions. This model specification follows the approach detailed in37 with

some modifications to increase model flexibility. For each experimental condition D = d, where

d ∈ {0, 1}, we use the following model specification to model the response for each individual i:

yi,D=d ∼ N
(
γ0 + αracej[i],D=d + αeducationk[i],D=d + αgenderl[i],D=d + αrace.education.genderj[i],k[i],l[i],D=d + αstates[i],D=d, σ

2
y

)
,

where

αracej ∼ N(0, σ2
race) for j = 1, ..., 4

αeducationk ∼ N(0, σ2
education) for k = 1, ..., 4

αgenderl ∼ N(0, σ2
gender) for l = 1, 2

αrace.education.genderj,k,l ∼ N(0, σ2
race.education.gender) for j = 1, ...4; k = 1, ...4; l = 1, 2

αstates ∼ N(αregionr[s],D=d + γdrivealonedrivealones,D=d + γsamesexsamesexs,D=d+

γcarboncarbons,D=d + γpres12pres12s,D=d, σ
2
state) for s = 1, ..., 51

αregionr ∼ N(0, σ2
region) for r = 1, ..., 9

Each variable is indexed over individual i and over response categories j,k,l, and s for race,

education, gender, and state geography variables, respectively. The state variable is further

modeled as a function of region and a series of geography-level covariates including the percentage

of individuals who drive alone in a given state, the percentage of same-sex households in a given

state, the level of point source carbon emissions in a given state, and the 2012 Democratic

Presidential vote share in a given state. In models to generate the congressional district effects,

the state-level variables are replaced by congressional district-level ones. The models are fitted

using the lmer function in the R package lme4; the lmer function fits the model using restricted

16



maximum likelihood.

Regarding the race, gender, education, and interacted race/gender/education variables, we

assume exchangeability of the group means across groups in each variable. Regarding the state

or congressional district groups, we include geographic-level fixed effects as well as random effects

for region. Therefore, for the state or congressional district groups, we assume exchangeability of

the group means conditional on the geographic-level fixed effects and the region random effects.

These assumptions allow us to “borrow strength” from other groups’ data when estimating

random effects for a particular group.

Using these two models (of control and treatment response surfaces), we estimate the treat-

ment effect θ̂q for each stratum q used in the post-stratification by subtracting the predicted

control outcome from the predicted treatment outcome. (Note that strata are also called cells

in some MRP literature.) Each stratum q is defined by gender, race, education, and state (or

congressional district) because we use U.S. Census conditional population frequencies (cells in

U.S. Census crosstabs) based on these variables for post-stratification. An example of a stra-

tum would be white males with only a high school degree living in Florida. For our state-level

estimates, we use 51 (50 states plus the District of Columbia) × 2 (genders) × 4 (education

levels) × 4 (racial groups) = 1632 strata. The four levels of education are less than high school,

high school, some college, and college. The four racial groups are white (non-Hispanic), black

(non-Hispanic), Hispanic, and other.

To estimate the treatment effect for each geographic unit c, we take a weighted mean of the

strata treatment effects for the strata in the geographic unit:

θ̂MRP
unit c =

∑
q∈cNq θ̂q∑
q∈cNq

,

where Nq is the actual population frequency in the stratum q.

To generate the 95 percent prediction intervals for the state-level estimates, we use the

predictInterval function in the R package merTools to generate a sampling distribution for

the random effects and fixed effects for each model. Using these sampling distributions, we

generate 10000 simulated treatment fitted values and 10000 simulated control fitted values for

each stratum. For each simulation, we post-stratify the difference between the treatment group

and control group to the state-level. For each state, we derive the 95 percent prediction interval

by calculating the 2.5 percentile and 97.5 percentile of the 10000 simulated state treatment

effects.
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Belief in the Scientific Consensus

Responses to the scientific consensus message converge around the actual percentage of scientists

who agree that climate change is real and human-caused (i.e., 97 percent); Supplementary Figures

1 and 2 showcase this trend at the individual and state-level, respectively. (The state-level

outcomes are estimated using MRP.) For those not exposed to the consensus message, perceptions

of the scientific consensus range widely and is on average much lower than 97 percent. At the

individual level, post-treatment, the control group has a mean response of 67.6 (SD = 22.2) while

the treatment group has a mean response of 84.4 (SD = 20.5). At the state level, post-treatment,

the mean state outcome for the control group is 67.6 (SD = 2.76), and the mean state outcome

for the treatment group is 84.3 (SD = 1.62).

Model Validation

We validate our estimated state-level results by comparing them to estimates derived from

disaggregation, using a technique developed by Pacheco 201150. Subsamples of varying sizes

were randomly selected from states with large sample sizes and used to simulate the samples of

less populous states. This procedure operates as follows:

• We draw 99 random samples of size n = 25 from the state with the greatest number of

respondents (California). In effect, we create 99 smaller simulated Californias. For each

draw, we use those “smaller Californias” as the testing set and the rest of the data points

as the training set.

• For each testing set, we train the MRP model using the training set and predict the treat-

ment effect using the testing set predictor variables. We compare the estimated treatment

effect with the actual treatment effect of Californians. The measure of accurate prediction

we use is the mean absolute error between the predicted and actual treatment effects. We

also track the mean absolute error using the estimated treatment effect from raw disaggre-

gation.

• We repeat steps 1 and 2 for n = 50, 10, 200, 400.

• We repeat steps 1 through 3 for Florida, Texas, and New York.

The results of our validation exercise are reported in Supplementary Figure 3. The figures

shows that error increases substantially using disaggregation with smaller simulated sample sizes.
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By contrast, error in the MRP estimates is relatively stable and lower than disaggregation across

all simulated sample sizes.

Comparing MRP Estimates with Disaggregated Estimates

In Supplementary Table 3, we present the state-level treatment effects estimated using MRP

and the disaggregation method (i.e., raw state estimates). The correlation between the MRP

estimates and the unweighted disaggregated estimates is 0.58. The correlation between the MRP

estimates and the weighted disaggregated estimates is 0.56. For states with sizable numbers of

respondents, the MRP estimates and the disaggregated estimates are very similar.

For the unweighted disaggregation method, we estimate the treatment effect for each state

using only the survey data for that state. For the weighted disaggregation method, we estimate

the treatment effect using the survey data for that state and the researcher-generated survey

weights.

We use inverse probability weighting to weight the sample to the March 2016 Current Pop-

ulation Survey (CPS). We combine each sample and the CPS; then we use logistic regression

to estimate the probability of being included in the sample. Covariates used in our propensity

score model include gender, age, education, race, geographic region, and whether the respon-

dents lived in a metropolitan area. The final weights are the inverse of the estimated probabilities

normalized such that the sum of each sample’s weights equals the sample size.

Although the disaggregated estimates from states that have very few respondents are unre-

liable, we can compare MRP estimates with disaggregated estimates from states with a sizable

number of respondents. For example, for states with more than 200 respondents, the mean dif-

ference between the MRP estimates and the unweighted disaggregated estimates is 0.05 (SD =

0.83); likewise, the mean difference between the MRP estimates and the weighted disaggregated

estimates is 0.43 (SD = 1.83).

Random Effects and Fixed Effects Estimates

For transparency, we have also included the random effects and fixed effects estimates from the

two multilevel models used to generate our state-level estimates in the Supplementary Infor-

mation. The point estimates, along with corresponding 95 percent confidence intervals, can be

found in Supplementary Figures 4–7.
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