380 research outputs found

    Associations between Gut Microbiota and Common Luminal Intestinal Parasites

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier (Cell Press) via the DOI in this record.The development and integration of DNA-based methods in research and clinical microbiology laboratories have enabled standardised and comprehensive detection and differentiation of the microbes colonising our guts. For instance, the single-celled parasites Blastocystis and Dientamoeba appear to be much more common than previously thought, especially so in healthy individuals. While increasing evidence appears to suggest limited pathogenicity of these parasites, next-generation-sequencing-based studies have helped us to appreciate links between parasite colonisation and certain host phenotypical characteristics and gut microbial profiles. The fundamental question remains as to whether such parasites are merely indicators or active manipulators of gut microbiota structure and function. In this article, we collate existing evidence that these parasites are, at minimum, indicators of intestinal microbiota structure

    The iron-sulfur cluster assembly genes iscS and iscU of Entamoeba histolytica were acquired by horizontal gene transfer

    Get PDF
    BACKGROUND: Iron-sulfur (FeS) proteins are present in all living organisms and play important roles in electron transport and metalloenzyme catalysis. The maturation of FeS proteins in eukaryotes is an essential function of mitochondria, but little is known about this process in amitochondriate eukaryotes. Here we report on the identification and analysis of two genes encoding critical FeS cluster (Isc) biosynthetic proteins from the amitochondriate human pathogen Entamoeba histolytica. RESULTS: E. histolytica IscU and IscS were found to contain all features considered essential for their biological activity, including amino acid residues involved in substrate and/or co-factor binding. The IscU protein differs significantly from other eukaryotic homologs and resembles the long type isoforms encountered in some bacteria. Phylogenetic analyses of E. histolytica IscS and IscU showed a close relationship with homologs from Helicobacter pylori and Campylobacter jejuni, to the exclusion of mitochondrial isoforms. CONCLUSIONS: The bacterial-type FeS cluster assembly genes of E. histolytica suggest their lateral acquisition from epsilon proteobacteria. This is a clear example of horizontal gene transfer (HGT) from eubacteria to unicellular eukaryotic organisms, a phenomenon known to contribute significantly to the evolution of eukaryotic genomes

    Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction (article)

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordThe research data supporting this publication are openly available in ORE at https://doi.org/10.24378/exe.2003Carboxylic acid reductases (CARs) are biocatalysts of industrial importance. Their properties, especially their poor stability, render them sub-optimal for use in a bioindustrial pipeline. Here, we employed ancestral sequence reconstruction (ASR) – a burgeoning engineering tool that can identify stabilizing but enzymatically neutral mutations throughout a protein. We used a three-algorithm approach to reconstruct functional ancestors of the Mycobacterial and Nocardial CAR1 orthologues. Ancestral CARs (AncCARs) were confirmed to be CAR enzymes with a preference for aromatic carboxylic acids. Ancestors also showed varied tolerances to solvents, pH and in vivo-like salt concentrations. Compared to well-studied extant CARs, AncCARs had a Tm up to 35 °C higher, with half-lives up to nine times longer than the greatest previously observed. Using ancestral reconstruction we have expanded the existing CAR toolbox with three new thermostable CAR enzymes, providing access to the high temperature biosynthesis of aldehydes to drive new applications in biocatalysis.Glaxosmithkline Research & Development Lt

    Evidence from bioinformatics, expression and inhibition studies of phosphoinositide-3 kinase signalling in Giardia intestinalis

    Get PDF
    BACKGROUND: Giardia intestinalis is a parasitic protozoan and major cause of diarrhoeal disease. Disease transmission is dependent on the ability of the parasite to differentiate back and forth between an intestine-colonising trophozoite and an environmentally-resistant infective cyst. Our current understanding of the intracellular signalling mechanisms that regulate parasite replication and differentiation is limited, yet such information could suggest new methods of disease control. Phosphoinositide-3 kinase (PI3K) signalling pathways have a central involvement in many vital eukaryotic processes, such as regulation of cell growth, intracellular membrane trafficking and cell motility. Here we present evidence for the existence of functional PI3K intracellular signalling pathways in G. intestinalis. RESULTS: We have identified and characterised two genes, Gipi3k1 and Gipi3k2, which encode putative PI3Ks. Both genes are expressed in trophozoites and encysting cells, suggesting a possible role of GiPI3K1 and GiPI3K2 in regulating giardial growth and differentiation. Extensive nucleotide and amino acid sequence characterisation predicts that both encoded PI3Ks are functional as indicated by the presence of highly conserved structural domains and essential catalytic residues. The inhibitory effect of the PI3K inhibitor LY294002 on trophozoite proliferation also supports their functionality. Phylogenetic analysis supports the identity of GiPI3K1 as a Class I isoform and GiPI3K2 as a Class III isoform. In addition, giardial genes encoding putative homologues of phosphoinositide-metabolising enzymes such as PTEN, MTM, PIPkin and PI 5-phosphatase as well as downstream effectors with phosphoinositide-binding domains have been identified, placing GiPI3K1 and GiPI3K2 in a broader signalling context. Compared with twenty-six PI3Ks from other organisms, GiPI3K1 and GiPI3K2 are unique in that they contain large insertions within their highly conserved kinase domains. The function of these insertions is unknown; however we show here that they are not intron-derived and would probably not hinder substrate binding. These insertions may represent a plausible drug target. CONCLUSION: G. intestinalis encodes and expresses two putative PI3Ks, at least one of which appears to be required during normal parasite proliferation. The identification of Class I and Class III but not Class II isoforms suggests that both extracellularly-initiated signalling (Class I-regulated) and intracellular vesicle trafficking (Class III-regulated) might be controlled by PI3Ks in G. intestinalis. The presence of genes encoding putative homologues of phosphoinositide-metabolising enzymes and downstream effectors in the G. intestinalis genome further suggests that the overall architecture of PI3K signalling may be comparable with pathways present in other better-studied organisms

    Halioticida noduliformans infection in eggs of lobster (Homarus gammarus) reveals its generalist parasitic strategy in marine invertebrates

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.A parasite exhibiting Oomycete-like morphology and pathogenesis was isolated from discoloured eggs of the European lobster (Homarus gammarus) and later found in gill tissues of adults. Group-specific Oomycete primers were designed to amplify the 18S ribosomal small subunit (SSU), which initially identified the organism as the same as the ‘Haliphthoros’ sp. NJM 0034 strain (AB178865.1) previously isolated from abalone (imported from South Australia to Japan). However, in accordance with other published SSU-based phylogenies, the NJM 0034 isolate did not group with other known Haliphthoros species in our Maximum Likelihood and Bayesian phylogenies. Instead, the strain formed an orphan lineage, diverging before the separation of the Saprolegniales and Pythiales. Based upon 28S large subunit (LSU) phylogeny, our own isolate and the previously unidentified 0034 strain are both identical to the abalone pathogen Halioticida noduliformans. The genus shares morphological similarities with Haliphthoros and Halocrusticida and forms a clade with these in LSU phylogenies. Here, we confirm the first recorded occurrence of H. noduliformans in European lobsters and associate its presence with pathology of the egg mass, likely leading to reduced fecundity.This work was conducted within the Centre for Sustainable Aquaculture Futures, a joint initiative between the University of Exeter and the Centre for Environment, Fisheries and Aquaculture Science (Cefas) and funded by a Cefas-Exeter University Alliance PhD Studentship to CH. Work was also supported through the Agri-Tech Catalyst, Industrial Stage Awards, Lobster Grower 2 project funded by Innovate UK (102531) and BBSRC (BB/N013891/1) and Defra contracts C6560 and C7277 to D

    Halioticida noduliformans infection in eggs of lobster ( Homarus gammarus ) reveals its generalist parasitic strategy in marine invertebrates

    Get PDF
    publisher: Elsevier articletitle: Halioticida noduliformans infection in eggs of lobster (Homarus gammarus) reveals its generalist parasitic strategy in marine invertebrates journaltitle: Journal of Invertebrate Pathology articlelink: http://dx.doi.org/10.1016/j.jip.2018.03.002 content_type: article copyright: © 2018 The Authors. Published by Elsevier Inc.0000-0002-6719-5565The file attached is the Published/publisher’s pdf version of the articleThis is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/)

    Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria.

    Get PDF
    addresses: School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK.types: Journal Article; Research Support, Non-U.S. Gov'tOnline open article. This is a copy of an article published in Cellular Microbiology © 2009 Blackwell Publishing Ltd. Cellular Microbiology is available online at: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1462-5822The assembly of vital reactive iron-sulfur (Fe-S) cofactors in eukaryotes is mediated by proteins inherited from the original mitochondrial endosymbiont. Uniquely among eukaryotes, however, Entamoeba and Mastigamoeba lack such mitochondrial-type Fe-S cluster assembly proteins and possess instead an analogous bacterial-type system acquired by lateral gene transfer. Here we demonstrate, using immunomicroscopy and biochemical methods, that beyond their predicted cytosolic distribution the bacterial-type Fe-S cluster assembly proteins NifS and NifU have been recruited to function within the relict mitochondrial organelles (mitosomes) of Entamoeba histolytica. Both Nif proteins are 10-fold more concentrated within mitosomes compared with their cytosolic distribution suggesting that active Fe-S protein maturation occurs in these organelles. Quantitative immunoelectron microscopy showed that amoebal mitosomes are minute but highly abundant cellular structures that occupy up to 2% of the total cell volume. In addition, protein colocalization studies allowed identification of the amoebal hydroperoxide detoxification enzyme rubrerythrin as a mitosomal protein. This protein contains functional Fe-S centres and exhibits peroxidase activity in vitro. Our findings demonstrate the role of analogous protein replacement in mitochondrial organelle evolution and suggest that the relict mitochondrial organelles of Entamoeba are important sites of metabolic activity that function in Fe-S protein-mediated oxygen detoxification

    Tart Cherry Concentrate Does Not Alter the Gut Microbiome, Glycaemic Control or Systemic Inflammation in a Middle-Aged Population.

    Get PDF
    This is the final version. available from MDPI via the DOI in this recordLimited evidence suggests that the consumption of polyphenols may improve glycaemic control and insulin sensitivity. The gut microbiome produces phenolic metabolites and increases their bioavailability. A handful of studies have suggested that polyphenol consumption alters gut microbiome composition. There are no data available investigating such effects in polyphenol-rich Montmorency cherry (MC) supplementation. A total of 28 participants (aged 40-60 years) were randomized to receive daily MC or glucose and energy-matched placebo supplementation for 4 wk. Faecal and blood samples were obtained at baseline and at 4 wk. There was no clear effect of supplementation on glucose handling (Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and Gutt indices), although the Matsuda index decreased significantly in the MC group post-supplementation, reflecting an increase in serum insulin concentration. Contrastingly, placebo, but not MC supplementation induced a 6% increase in the Oral Glucose Insulin Sensitivity (OGIS) estimate of glucose clearance. Serum IL-6 and C reactive protein were unaltered by either supplement. The faecal bacterial microbiome was sequenced; species richness and diversity were unchanged by MC or placebo and no significant correlation existed between changes in Bacteroides and Faecalibacterium abundance and any index of insulin sensitivity. Therefore, 4 weeks of MC supplementation did not alter the gut microbiome, glycaemic control or systemic concentrations of IL-6 and CRP in a middle-aged population.The Cherry Marketing Institut
    • …
    corecore