176 research outputs found

    Basque-Spanish bilingual children’s expressive and receptive grammatical abilities

    Get PDF
    Published online: 26 Nov 2018Expressive-receptive gaps in lexical abilities have been documented for bilingual children, but few studies have investigated whether a similar gap is observed at the grammatical level. The current study assessed grammatical abilities through sentence production and comprehension tasks in both languages in 17 Basque-Spanish simultaneous bilingual 6- through 9-year-olds (both languages acquired before three years of age). The children scored lower in Basque than Spanish for sentence production, but no significant differences were found for sentence comprehension. While an expressive-receptive gap was found for both languages, this gap was larger in Basque than in Spanish. Object-verb agreement errors were especially prevalent in Basque production, possibly because verbs in Spanish only agree with the subject. These results demonstrate that expressive-receptive gaps are also observed in bilingual children’s grammatical abilities and may vary depending on the structural similarity between the two languages.The authors acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centres/Units of Excellence in R&D (SEV-2015-490)

    Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction (article)

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordThe research data supporting this publication are openly available in ORE at https://doi.org/10.24378/exe.2003Carboxylic acid reductases (CARs) are biocatalysts of industrial importance. Their properties, especially their poor stability, render them sub-optimal for use in a bioindustrial pipeline. Here, we employed ancestral sequence reconstruction (ASR) – a burgeoning engineering tool that can identify stabilizing but enzymatically neutral mutations throughout a protein. We used a three-algorithm approach to reconstruct functional ancestors of the Mycobacterial and Nocardial CAR1 orthologues. Ancestral CARs (AncCARs) were confirmed to be CAR enzymes with a preference for aromatic carboxylic acids. Ancestors also showed varied tolerances to solvents, pH and in vivo-like salt concentrations. Compared to well-studied extant CARs, AncCARs had a Tm up to 35 °C higher, with half-lives up to nine times longer than the greatest previously observed. Using ancestral reconstruction we have expanded the existing CAR toolbox with three new thermostable CAR enzymes, providing access to the high temperature biosynthesis of aldehydes to drive new applications in biocatalysis.Glaxosmithkline Research & Development Lt

    Tart Cherry Concentrate Does Not Alter the Gut Microbiome, Glycaemic Control or Systemic Inflammation in a Middle-Aged Population.

    Get PDF
    This is the final version. available from MDPI via the DOI in this recordLimited evidence suggests that the consumption of polyphenols may improve glycaemic control and insulin sensitivity. The gut microbiome produces phenolic metabolites and increases their bioavailability. A handful of studies have suggested that polyphenol consumption alters gut microbiome composition. There are no data available investigating such effects in polyphenol-rich Montmorency cherry (MC) supplementation. A total of 28 participants (aged 40-60 years) were randomized to receive daily MC or glucose and energy-matched placebo supplementation for 4 wk. Faecal and blood samples were obtained at baseline and at 4 wk. There was no clear effect of supplementation on glucose handling (Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and Gutt indices), although the Matsuda index decreased significantly in the MC group post-supplementation, reflecting an increase in serum insulin concentration. Contrastingly, placebo, but not MC supplementation induced a 6% increase in the Oral Glucose Insulin Sensitivity (OGIS) estimate of glucose clearance. Serum IL-6 and C reactive protein were unaltered by either supplement. The faecal bacterial microbiome was sequenced; species richness and diversity were unchanged by MC or placebo and no significant correlation existed between changes in Bacteroides and Faecalibacterium abundance and any index of insulin sensitivity. Therefore, 4 weeks of MC supplementation did not alter the gut microbiome, glycaemic control or systemic concentrations of IL-6 and CRP in a middle-aged population.The Cherry Marketing Institut

    Halioticida noduliformans infection in eggs of lobster (Homarus gammarus) reveals its generalist parasitic strategy in marine invertebrates

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.A parasite exhibiting Oomycete-like morphology and pathogenesis was isolated from discoloured eggs of the European lobster (Homarus gammarus) and later found in gill tissues of adults. Group-specific Oomycete primers were designed to amplify the 18S ribosomal small subunit (SSU), which initially identified the organism as the same as the ‘Haliphthoros’ sp. NJM 0034 strain (AB178865.1) previously isolated from abalone (imported from South Australia to Japan). However, in accordance with other published SSU-based phylogenies, the NJM 0034 isolate did not group with other known Haliphthoros species in our Maximum Likelihood and Bayesian phylogenies. Instead, the strain formed an orphan lineage, diverging before the separation of the Saprolegniales and Pythiales. Based upon 28S large subunit (LSU) phylogeny, our own isolate and the previously unidentified 0034 strain are both identical to the abalone pathogen Halioticida noduliformans. The genus shares morphological similarities with Haliphthoros and Halocrusticida and forms a clade with these in LSU phylogenies. Here, we confirm the first recorded occurrence of H. noduliformans in European lobsters and associate its presence with pathology of the egg mass, likely leading to reduced fecundity.This work was conducted within the Centre for Sustainable Aquaculture Futures, a joint initiative between the University of Exeter and the Centre for Environment, Fisheries and Aquaculture Science (Cefas) and funded by a Cefas-Exeter University Alliance PhD Studentship to CH. Work was also supported through the Agri-Tech Catalyst, Industrial Stage Awards, Lobster Grower 2 project funded by Innovate UK (102531) and BBSRC (BB/N013891/1) and Defra contracts C6560 and C7277 to D

    Halioticida noduliformans infection in eggs of lobster ( Homarus gammarus ) reveals its generalist parasitic strategy in marine invertebrates

    Get PDF
    publisher: Elsevier articletitle: Halioticida noduliformans infection in eggs of lobster (Homarus gammarus) reveals its generalist parasitic strategy in marine invertebrates journaltitle: Journal of Invertebrate Pathology articlelink: http://dx.doi.org/10.1016/j.jip.2018.03.002 content_type: article copyright: © 2018 The Authors. Published by Elsevier Inc.0000-0002-6719-5565The file attached is the Published/publisher’s pdf version of the articleThis is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/)

    The first clawed lobster virus Homarus gammarus nudivirus (HgNV n. sp.) expands the diversity of the Nudiviridae

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. Viral diseases of crustaceans are increasingly recognised as challenges to shellfish farms and fisheries. Here we describe the first naturally-occurring virus reported in any clawed lobster species. Hypertrophied nuclei with emarginated chromatin, characteristic histopathological lesions of DNA virus infection, were observed within the hepatopancreatic epithelial cells of juvenile European lobsters (Homarus gammarus). Transmission electron microscopy revealed infection with a bacilliform virus containing a rod shaped nucleocapsid enveloped in an elliptical membrane. Assembly of PCR-free shotgun metagenomic sequencing produced a circular genome of 107,063 bp containing 97 open reading frames, the majority of which share sequence similarity with a virus infecting the black tiger shrimp: Penaeus monodon nudivirus (PmNV). Multiple phylogenetic analyses confirm the new virus to be a novel member of the Nudiviridae: Homarus gammarus nudivirus (HgNV). Evidence of occlusion body formation, characteristic of PmNV and its closest relatives, was not observed, questioning the horizontal transmission strategy of HgNV outside of the host. We discuss the potential impacts of HgNV on juvenile lobster growth and mortality and present HgNV-specific primers to serve as a diagnostic tool for monitoring the virus in wild and farmed lobster stocks.Centre for Environment, Fisheries and Aquaculture Science (CEFAS)Innovate UKBBSR

    Mitochondrial glycolysis in a major lineage of eukaryotes

    Get PDF
    This is the author accepted manuscript. The final version is freely available from OUP via the DOI in this recordThe establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by the bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.TAW is supported by a Royal Society University Research Fellowship and NERC grant NE/P00251X/1. Work in the lab of MvdG was supported by Wellcome Trust grant 078566/A/05/Z. PGK wishes to acknowledge support by the German Research Foundation (DFG, grant KR 1661/6-1) and the Gordon and Betty Moore Foundation GBMF 4966 (grant DiaEdit)

    Sulfate Activation in Mitosomes Plays an Important Role in the Proliferation of Entamoeba histolytica

    Get PDF
    Mitochondrion-related organelles, mitosomes and hydrogenosomes, are found in a phylogenetically broad range of organisms. Their components and functions are highly diverse. We have previously shown that mitosomes of the anaerobic/microaerophilic intestinal protozoan parasite Entamoeba histolytica have uniquely evolved and compartmentalized a sulfate activation pathway. Although this confined metabolic pathway is the major function in E. histolytica mitosomes, their physiological role remains unknown. In this study, we examined the phenotypes of the parasites in which genes involved in the mitosome functions were suppressed by gene silencing, and showed that sulfate activation in mitosomes is important for sulfolipid synthesis and cell proliferation. We also demonstrated that both Cpn60 and unusual mitochondrial ADP/ATP transporter (mitochondria carrier family, MCF) are important for the mitosome functions. Immunoelectron microscopy demonstrated that the enzymes involved in sulfate activation, Cpn60, and mitochondrial carrier family were differentially distributed within the electron dense, double membrane-bounded organelles. The importance and topology of the components in E. histolytica mitosomes reinforce the notion that they are not “rudimentary” or “residual” mitochondria, but represent a uniquely evolved crucial organelle in E. histolytica

    Reporting of quality attributes in scientific publications presenting biosimilarity assessments of (intended) biosimilars: a systematic literature review

    Get PDF
    Last years, more than 46 unique biosimilars were approved by EMA and/or US-FDA following patent expiration of reference products. Biosimilars are not identical like generics, but highly similar versions where demonstrating biosimilarity of quality attributes (QAs) to a reference product is the basis of development and regulatory approval. Information on QAs assessed to establish biosimilarity may not always be publicly available, although this information is imperative to understand better the science behind biosimilars approval. This study aims to identify QA types reported in publications presenting biosimilarity assessments of (intended) biosimilars over time. English full-text publications presenting biosimilarity assessments of QAs for (intended) biosimilars between 2000 and 2019 identified from PubMed and EMBASE. Publication characteristics and QAs classified into: structural (physicochemical properties, primary structure, higher-order structures (HOSs), post-translational modifications (PTMs), and purity and impurities) and functional (biological and immunochemical activities) were extracted from publications. Seventy-nine publications were identified (79% open-access, 75% industry-sponsored, 62% including unapproved biosimilars, and 66% involving antibodies). Reporting frequencies varied for QA types: biological activity (94%), physicochemical properties (81%), PTMs (79%), primary structure (77%) purity and impurities (73%), HOSs (58%), and immunochemical activity (41%). The number of publications increased from 6 (7%) during 2009–2011 to 62 (79%) during 2015–2019. Eighteen (28%) publications reported all QA types relevant to an active-biological-substance. Reporting of most QA types increased over time that most evidenced by immunochemical activity (from 0% to 47%) which occured after EMA monoclona
    corecore