59 research outputs found

    Characterization of clays from Tharaka-Nithi County in Kenya for industrial and agricultural applications

    Get PDF
    Clay samples from Tharaka-Nithi County in Kenya were characterized by hydrometer, X-ray fluorescence spectroscopy (XRF), atomic absorption spectroscopy (AAS), TGA, scanning electron microscopy (SEM) and powder diffraction (XRD) methods. The F-test and t-test were used to interpret the results. The major oxides present were Al2O3, SiO2 and the minor ones were CaO, TiO2, MnO, Fe2O3, K2O, MgO and Na2O. The values of SiO2 were greater than those of Al2O3, indicating that the samples were of clay minerals. The clay minerals with low cation exchange capacity (CEC) were present in the samples. The Atterberg limits showed that the inorganic clays of either low or intermediate plasticity having low contents of organic matter were present in the samples. The analysis further showed the availability of essential elements necessary for plant growth. The TGA analysis indicated that the decomposition of clay samples occurred in four steps. The scanning electron microscope photographs revealed that the samples contained a mixture of minerals of morphologies with crystallinity, high porosity and unstable under the electron beam. The major impurity in the clay is quartz, ranging from 22.6-31.9%. Albite is the most dominant component in the clay minerals contributing to 30.3 to 44.1%. The clay from the study area can be used as agro mineral additive to enhance soil fertility for crop production, a fluxing agent in ceramics and glass applications and also as functional fillers in the paint, plastic, rubber and adhesive industries after beneficiation.Key words: Scanning electron microscopy, X-ray diffraction, clay minerals, Atterberg limits, atomic absorption spectroscopy (AAS), Fourier transform infrared spectroscopy (FTIR), TGA, quartz

    Chlorido-(<i>η</i><sup>6</sup>-<i>p</i>-cymene)-(bis(pyrazol-1-yl)methane-<i>κ</i><sup>2</sup><i>N</i>,<i>N</i>′)Osmium(II) Tetrafluoroborate, C<sub>17</sub>H<sub>22</sub>BClF<sub>4</sub>N<sub>4</sub>Os

    No full text
    The powder of the arene osmium(II) complex, [Os(II)(dpzm)(η6-p-cym)Cl]BF4 (dpzm = di(1H-pyrazol-1-yl)methane; η6-p-cym = para-cymene), with a formula of C17H22BClF4N4Os (referred to herein as 1) was isolated from the reaction of [(η6-p-cym)Os(μ-Cl)(Cl)]2 with dpzm dissolved in acetonitrile and under a flow of nitrogen gas. It was characterized by spectroscopic techniques (viz., FTIR, 1H NMR, UV-Visible absorption). Yellow crystal blocks of 1 were grown by the slow evaporation from the methanolic solution of its powder. The single-crystal X-ray structure of 1 was solved by diffraction analysis on a Bruker APEX Duo CCD area detector diffractometer using the Cu(Kα), λ = 1.54178 Å as the radiation source, and 1 crystallizes in the monoclinic crystal system and the C2/c (no. 15) space group

    Chlorido-(&eta;6-p-cymene)-(bis(pyrazol-1-yl)methane-&kappa;2N,N&prime;)Osmium(II) Tetrafluoroborate, C17H22BClF4N4Os

    No full text
    The powder of the arene osmium(II) complex, [Os(II)(dpzm)(&eta;6-p-cym)Cl]BF4 (dpzm = di(1H-pyrazol-1-yl)methane; &eta;6-p-cym = para-cymene), with a formula of C17H22BClF4N4Os (referred to herein as 1) was isolated from the reaction of [(&eta;6-p-cym)Os(&mu;-Cl)(Cl)]2 with dpzm dissolved in acetonitrile and under a flow of nitrogen gas. It was characterized by spectroscopic techniques (viz., FTIR, 1H NMR, UV-Visible absorption). Yellow crystal blocks of 1 were grown by the slow evaporation from the methanolic solution of its powder. The single-crystal X-ray structure of 1 was solved by diffraction analysis on a Bruker APEX Duo CCD area detector diffractometer using the Cu(K&alpha;), &lambda; = 1.54178 &Aring; as the radiation source, and 1 crystallizes in the monoclinic crystal system and the C2/c (no. 15) space group

    Crystal Structures of Half-Sandwich Ru(II) Complexes, [(&eta;6-p-Cymene)(3-chloro-6-(1H-pyrazol-1-yl)pyridazine)Ru(X)]BF4, (X = Cl, Br, I)

    No full text
    Herein, we report the synthesis and single-crystal X-ray structures of three (&eta;6-p-cymene)Ru(II) tetrafluoroborate salts, viz., [(&eta;6-p-cymene)(3-chloro-6-(1H-pyrazol-1-yl)pyridazine)Ru(X)]BF4, (X = Cl, Br, I), Ru1-3. They were prepared by the reactions of [(&eta;6-p-cymene)Ru(&mu;-X)(X)]2, (X = Cl, Br, I) with two-mole equivalents of 3-chloro-6-(1H-pyrazol-1-yl)pyridazine, under inert conditions at ambient temperatures, and subsequently precipitated by the addition of excess BF4&minus; ions. Orange crystalline precipitates were obtained in good yields, from which the respective single crystals for X-ray diffraction analysis were recrystallized by slow evaporation from their methanolic/diethyl ether solutions. The Ru(II) complexes were characterized by various spectroscopic techniques and chemical methods, which included FTIR, 1H/13C NMR, UV-visible absorption, mass spectrometry, and elemental analysis. The molecular structures were solved by single-crystal X-ray crystal diffraction analysis. The complexes crystallized in the monoclinic crystal system in the P21/c (Ru1-2) and P21/n (Ru3) space groups. Density Functionals Theoretical (DFT) calculations were performed in methanol to gain an understanding of the electronic and structural properties of the complexes. Trends in the data metrics were established, and selected data were compared with the diffraction data. The electrophilicity indices of Ru1-3 follow the order Ru3 &gt; Ru2 &gt; Ru1, and the trend is in line with their anticipated order of reactivity towards nucleophiles

    One-pot stepwise reductive amination reaction by N-coordinate sulfonamido-functionalized Ru(II) complexes in water

    No full text
    New complexes of formula [RuCl(p-cymene)(L)] (7-12) were prepared with [RuCl2(p-cymene)](2) and pre-synthesized N-arenesulfonly-o-phenylenediamines (1-6) and characterized using H-1 NMR, C-13 NMR, Fourier transform infrared and UV-visible spectroscopic techniques, and single-crystal X-ray diffraction analysis was performed for one complex (8). Complexes 7-12 were investigated in the reduced imine synthesis reaction (in the presence of HCOONa/HCOOH). The best turnover frequency values were found to be 100 h(-1) for 1 and 99 h(-1) for 6 in the transfer hydrogenative reductive amination reaction of 4-methoxyaniline and 3,4,5-trimethoxybenzaldehyde. The most important feature of this reaction is that it is an environmental friendly procedure because of being conducted in an aqueous environment. That no organic solvent is used allows one to say that this reaction represents green chemistry
    corecore