924 research outputs found

    The evolution of the natural killer complex; a comparison between mammals using new high-quality genome assemblies and targeted annotation.

    Get PDF
    Natural killer (NK) cells are a diverse population of lymphocytes with a range of biological roles including essential immune functions. NK cell diversity is in part created by the differential expression of cell surface receptors which modulate activation and function, including multiple subfamilies of C-type lectin receptors encoded within the NK complex (NKC). Little is known about the gene content of the NKC beyond rodent and primate lineages, other than it appears to be extremely variable between mammalian groups. We compared the NKC structure between mammalian species using new high-quality draft genome assemblies for cattle and goat; re-annotated sheep, pig, and horse genome assemblies; and the published human, rat, and mouse lemur NKC. The major NKC genes are largely in the equivalent positions in all eight species, with significant independent expansions and deletions between species, allowing us to propose a model for NKC evolution during mammalian radiation. The ruminant species, cattle and goats, have independently evolved a second KLRC locus flanked by KLRA and KLRJ, and a novel KLRH-like gene has acquired an activating tail. This novel gene has duplicated several times within cattle, while other activating receptor genes have been selectively disrupted. Targeted genome enrichment in cattle identified varying levels of allelic polymorphism between the NKC genes concentrated in the predicted extracellular ligand-binding domains. This novel recombination and allelic polymorphism is consistent with NKC evolution under balancing selection, suggesting that this diversity influences individual immune responses and may impact on differential outcomes of pathogen infection and vaccination

    An X-ray Mini-survey of Nearby Edge-on Starburst Galaxies II. The Question of Metal Abundance

    Get PDF
    (abbreviated) We have undertaken an X-ray survey of a far-infrared flux limited sample of seven nearby edge-on starburst galaxies. Here, we examine the two X-ray-brightest sample members NGC 253 and M 82 in a self-consistent manner, taking account of the spatial distribution of the X-ray emission in choosing our spectral models. There is significant X-ray absorption in the disk of NGC 253. When this is accounted for we find that multi-temperature thermal plasma models with significant underlying soft X-ray absorption are more consistent with the imaging data than single-temperature models with highly subsolar abundances or models with minimal absorption and non-equilibrium thermal ionization conditions. Our models do not require absolute abundances that are inconsistent with solar values or unusually supersolar ratios of the alpha-burning elements with respect to Fe (as claimed previously). We conclude that with current data, the technique of measuring abundances in starburst galaxies via X-ray spectral modeling is highly uncertain. Based on the point-like nature of much of the X-ray emission in the PSPC hard-band image of NGC 253, we suggest that a significant fraction of the ``extended'' X-ray emission in the 3-10 keV band seen along the disk of the galaxy with ASCA and BeppoSAX (Cappi et al.) is comprised of discrete sources in the disk, as opposed to purely diffuse, hot gas. This could explain the low Fe abundances of ~1/4 solar derived for pure thermal models.Comment: (accepted for publication in the Astrophysical Journal

    Very Extended X-ray and H-alpha Emission in M82: Implications for the Superwind Phenomenon

    Full text link
    We discuss the properties and implications of a 3.7x0.9 kpc region of spatially-coincident X-ray and H-alpha emission about 11.6 kpc to the north of the galaxy M82 previously discussed by Devine and Bally (1999). The PSPC X-ray spectrum is fit by thermal plasma (kT=0.80+-0.17 keV) absorbed by only the Galactic foreground column density. We evaluate the relationship of the X-ray/H-alpha ridge to the M82 superwind. The main properties of the X-ray emission can all be explained as being due to shock-heating driven as the superwind encounters a massive ionized cloud in the halo of M82. This encounter drives a slow shock into the cloud, which contributes to the excitation of the observed H-alpha emission. At the same time, a fast bow-shock develops in the superwind just upstream of the cloud, and this produces the observed X-ray emission. This interpretation would imply that the superwind has an outflow speed of roughly 800 km/s, consistent with indirect estimates based on its general X-ray properties and the kinematics of the inner kpc-scale region of H-alpha filaments. The gas in the M82 ridge is roughly two orders-of-magnitude hotter than the minimum "escape temperature" at this radius, so this gas will not be retained by M82. (abridged)Comment: 24 pages (latex), 3 figures (2 gif files and one postscript), accepted for publication in Part 1 of The Astrophysical Journa

    Colour contrast sensitivity in eyes at high risk of neovascular age-related macular degeneration

    Get PDF
    Purpose: To generate the first published reference database of colour contrast sensitivity in eyes at high risk of neovascular age-related macular degeneration and to explore this important feature in quality of vision. Background: Quality of vision depends on many factors. Changes in chromatic contrast sensitivity remain largely unexplored in eyes at high risk of neovascular age-related macular degeneration; they may however not only be relevant for quality of life but also an early indicator of the onset of the disease, so it is important to have a means to evaluate any variation in colour contrast sensitivity, especially in view of the likely increase in neovascular age-related macular degeneration as the population ages. Methods: This prospective longitudinal study evaluated colour contrast sensitivity along the protan and tritan colour axes in 145 eyes at high risk of neovascular age-related macular degeneration. Results: Colour contrast sensitivity showed statistically significant correlations with age and visual acuity, but not gender nor laterality (i.e. whether the right or left eye was being tested). There was significant variability among individuals, especially for the tritan axis, with some subjects well within normal limits for age and others with very poor colour contrast sensitivity. Conclusion: This study has generated the first published colour contrast sensitivity reference database for eyes at high risk of neovascular age-related macular degeneration. It has also shown a high inter-individual variability of colour contrast sensitivity in eyes at high risk of neovascular age-related macular degeneration, but the significance of this is unclear. Further work is required to establish if eyes with high colour contrast sensitivity thresholds (i.e. poor colour vision) have a higher risk of developing neovascular age-related macular degeneration over time, and this is the subject of ongoing work

    The Origin of the Mass--Metallicity Relation: Insights from 53,000 Star-Forming Galaxies in the SDSS

    Full text link
    We utilize Sloan Digital Sky Survey imaging and spectroscopy of ~53,000 star-forming galaxies at z~0.1 to study the relation between stellar mass and gas-phase metallicity. We derive gas-phase oxygen abundances and stellar masses using new techniques which make use of the latest stellar evolutionary synthesis and photoionization models. We find a tight (+/-0.1 dex) correlation between stellar mass and metallicity spanning over 3 orders of magnitude in stellar mass and a factor of 10 in metallicity. The relation is relatively steep from 10^{8.5} - 10^{10.5} M_sun, in good accord with known trends between luminosity and metallicity, but flattens above 10^{10.5} M_sun. We use indirect estimates of the gas mass based on the H-alpha luminosity to compare our data to predictions from simple closed box chemical evolution models. We show that metal loss is strongly anti-correlated with baryonic mass, with low mass dwarf galaxies being 5 times more metal-depleted than L* galaxies at z~0.1. Evidence for metal depletion is not confined to dwarf galaxies, but is found in galaxies with masses as high as 10^{10} M_sun. We interpret this as strong evidence both of the ubiquity of galactic winds and of their effectiveness in removing metals from galaxy potential wells.Comment: ApJ accepted, 15 pages, 9 figures, emulateapj.st

    Absorption-Line Probes of Gas and Dust in Galactic Superwinds

    Full text link
    We discuss moderate resolution spectra of the NaD absorption-line in a sample of 32 far-IR-bright starburst galaxies. In 18 cases, the line is produced primarily by interstellar gas, and in 12 of these it is blueshifted by over 100 km/s relative to the galaxy systemic velocity. The absorption-line profiles in these outflow sources span the range from near the galaxy systemic velocity to a maximum blueshift of 400 to 600 km/s. The outflows occur in galaxies systematically viewed more nearly face-on than the others. We therefore argue that the absorbing material consists of ambient interstellar gas accelerated along the minor axis of the galaxy by a hot starburst-driven superwind. The NaD lines are optically-thick, but indirect arguments imply total Hydrogen column densities of N_H = few X 10^{21} cm^{-2}. This implies that the superwind is expelling matter at a rate comparable to the star-formation rate. This outflowing material is very dusty: we find a strong correlation between the depth of the NaD profile and the line-of-sight reddening (E(B-V) = 0.3 to 1 over regions several-to-ten kpc in size). The estimated terminal velocities of superwinds inferred from these data and extant X-ray data are typically 400 to 800 km/s, are independent of the galaxy rotation speed, and are comparable to (substantially exceed) the escape velocities for L∗L_* (dwarf) galaxies. The resulting loss of metals can establish the mass-metallicity relation in spheroids, produce the observed metallicity in the ICM, and enrich a general IGM to 10−1^{-1} solar metallicity. If the outflowing dust grains survive their journey into the IGM, their effect on observations of cosmologically-distant objects is significant.Comment: 65 pages, including 16 figures. ApJ, in pres

    Caffeine and Placebo Improved Maximal Exercise Performance Despite Unchanged Motor Cortex Activation and Greater Prefrontal Cortex Deoxygenation

    Get PDF
    Caffeine (CAF) is an ergogenic aid used to improve exercise performance. Independent studies have suggested that caffeine may have the ability to increase corticospinal excitability, thereby decreasing the motor cortex activation required to generate a similar motor output. However, CAF has also been suggested to induce a prefrontal cortex (PFC) deoxygenation. Others have suggested that placebo (PLA) may trigger comparable effects to CAF, as independent studies found PLA effects on motor performance, corticospinal excitability, and PFC oxygenation. Thus, we investigated if CAF and CAF-perceived PLA may improve motor performance, despite the likely unchanged MC activation and greater PFC deoxygenation. Nine participants (26.4 ± 4.8 years old, VO2MAX of 42.2 ± 4.6 mL kg-1 min-1) performed three maximal incremental tests (MITs) in control (no supplementation) and ∌60 min after CAF and PLA ingestion. PFC oxygenation (near-infrared spectroscopy at Fp1 position), MC activation (EEG at Cz position) and vastus lateralis and rectus femoris muscle activity (EMG) were measured throughout the tests. Compared to control, CAF and PLA increased rectus femoris muscle EMG (P = 0.030; F = 2.88; d = 0.84) at 100% of the MIT, and enhanced the peak power output (P = 0.006; F = 12.97; d = 1.8) and time to exhaustion (P = 0.007; F = 12.97; d = 1.8). In contrast, CAF and PLA did not change MC activation, but increased the PFC deoxygenation as indicated by the lower O2Hb (P = 0.001; F = 4.68; d = 1.08) and THb concentrations (P = 0.01; F = 1.96; d = 0.7) at 80 and 100% the MIT duration. These results showed that CAF and CAF-perceived PLA had the ability to improve motor performance, despite unchanged MC activation and greater PFC deoxygenation. The effectiveness of CAF as ergogenic aid to improve MIT performance was challenged

    Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis

    Get PDF
    Although the geological record indicates that eukaryotes evolved by 1.9–1.4 Ga, their early evolution is poorly resolved taxonomically and chronologically. The fossil red alga Bangiomorpha pubescens is the only recognized crown-group eukaryote older than ca. 0.8 Ga and marks the earliest known expression of extant forms of multicellularity and eukaryotic photosynthesis. Because it postdates the divergence between the red and green algae and the prior endosymbiotic event that gave rise to the chloroplast, B. pubescens is uniquely important for calibrating eukaryotic evolution. However, molecular clock estimates for the divergence between the red and green algae are highly variable, and some analyses estimate this split to be younger than the widely inferred but poorly constrained first appearance age of 1.2 Ga for B. pubescens. As a result, many molecular clock studies reject this fossil ex post facto. Here we present new Re-Os isotopic ages from sedimentary rocks that stratigraphically bracket the occurrence of B. pubescens in the Bylot Supergroup of Baffin Island and revise its first appearance to 1.047 +0.013/–0.017 Ga. This date is 150 m.y. younger than commonly held interpretations and permits more precise estimates of early eukaryotic evolution. Using cross-calibrated molecular clock analyses with the new fossil age, we calculate that photosynthesis within the Eukarya emerged ca. 1.25 Ga. This date for primary plastid endosymbiosis serves as a benchmark for interpreting the fossil record of early eukaryotes and evaluating their role in the Proterozoic biosphere

    EMG amplitude in maximal and submaximal exercise is dependent on signal capture rate

    Get PDF
    This study analysed the effect of different electromyographic (EMG) capture rates during maximal voluntary contraction, submaximal and maximal dynamic cycling activity on EMG amplitude and signal characteristics. Ten healthy subjects participated in this study. Peak power output (PPO) and maximal isometric force output (MVC) were measured, followed by a progressive cycle ride on a cycle ergometer. Electromyographic (EMG) data were simultaneously captured during the MVC and cycling activities at frequencies of 32, 64, 128, 256, 512, 1024 and 1984 Hz. Significant differences in amplitude were found (p < 0.01) between MVC, submaximal (SUB) and maximal cycling activities (PWATT) for all capture rates. Asymptote values for IEMG amplitude occurred at EMG capture rates of 1604 ± 235.6 Hz during MVC, 503.1 ± 236.2 Hz during PWATT and 326.2 ± 105.4 Hz during SUB cycling activity and were significantly different (p < 0.01). No significant differences were found for force/EMG ratios between PWATT and MVC at 1984 Hz capture rates (3.8 ± 1.7 N/V vs 2.5 ± 0.9 N/V) while significant differences occurred at 32 Hz capture rate (6.2 ± 3.8 vs 16.0 ± 8.0; p < 0.01). Low correlations were found between EMG activity captured at 1984 Hz during PWATT and lean thigh volume (r = 0.36) and MVC (r = 0.32). Asymptote values found on this study suggest that data captured below 326 Hz for SUB, 503 Hz for PWATT and 1604 Hz for MVC are not reliable. Therefore apparatus capturing EMG data at low frequencies from these values cannot be used for quantitative data analyses
    • 

    corecore