14 research outputs found

    The Space Infrared Interferometric Telescope (SPIRIT): High-resolution imaging and spectroscopy in the far-infrared

    Full text link
    We report results of a recently-completed pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their inhomogeneous composition; (2) characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. Observations with SPIRIT will be complementary to those of the James Webb Space Telescope and the ground-based Atacama Large Millimeter Array. All three observatories could be operational contemporaneously.Comment: 20 pages, 12 figures, accepted for publication in J. Adv. Space Res. on 26 May 200

    Functional Genomics Unique to Week 20 Post Wounding in the Deep Cone/Fat Dome of the Duroc/Yorkshire Porcine Model of Fibroproliferative Scarring

    Get PDF
    Background: Hypertrophic scar was first described over 100 years ago; PubMed has more than 1,000 references on the topic. Nevertheless prevention and treatment remains poor, because 1) there has been no validated animal model; 2) human scar tissue, which is impossible to obtain in a controlled manner, has been the only source for study; 3) tissues typically have been homogenized, mixing cell populations; and 4) gene-by-gene studies are incomplete.Methodology/Principal Findings: We have assembled a system that overcomes these barriers and permits the study of genome-wide gene expression in microanatomical locations, in shallow and deep partial-thickness wounds, and pigmented and non-pigmented skin, using the Duroc( pigmented fibroproliferative)/Yorkshire( non-pigmented non-fibroproliferative) porcine model. We used this system to obtain the differential transcriptome at 1, 2, 3, 12 and 20 weeks post wounding. It is not clear when fibroproliferation begins, but it is fully developed in humans and the Duroc breed at 20 weeks. Therefore we obtained the derivative functional genomics unique to 20 weeks post wounding. We also obtained long-term, forty-six week follow-up with the model.Conclusions/Significance: 1) the scars are still thick at forty-six weeks post wounding further validating the model. 2) the differential transcriptome provides new insights into the fibroproliferative process as several genes thought fundamental to fibroproliferation are absent and others differentially expressed are newly implicated. 3) the findings in the derivative functional genomics support old concepts, which further validates the model, and suggests new avenues for reductionist exploration. in the future, these findings will be searched for directed networks likely involved in cutaneous fibroproliferation. These clues may lead to a better understanding of the systems biology of cutaneous fibroproliferation, and ultimately prevention and treatment of hypertrophic scarring.The National Institute on Disability and Rehabilitation ResearchThe National Institutes of HealthThe Washington State Council of Fire Fighters Burn FoundationThe Northwest Burn FoundationUniv Washington, Dept Surg, Div Plast Surg, Seattle, WA 98195 USAIowa State Univ, Dept Anim Sci, Ames, IA USAUniv Washington, Dept Biostat, Seattle, WA 98195 USAMahidol Univ, Ramathibodi Hosp, Dept Surg, Bangkok 10700, ThailandUniv Washington, Dept Environm & Occupat Hlth Sci, Seattle, WA 98195 USAUniversidade Federal de São Paulo, Div Plast Surg, Dept Surg, São Paulo, BrazilUniversidade Federal de São Paulo, Div Plast Surg, Dept Surg, São Paulo, BrazilThe National Institute on Disability and Rehabilitation Research: H133G050022The National Institutes of Health: 1R21GM074673The National Institutes of Health: 5U54GM062119-09Web of Scienc

    Microscopic inflammatory foci in burn scars: Data from a porcine burn model

    No full text
    Background: Hypertrophic scars in burn victims usually occur after delayed wound healing and the active phase of scar formation can persist substantially even after wound closure. Currently, the pathophysiology of the hypertrophic scar is not completely understood. This study investigated the inflammatory response in scar tissue at week 6 post-burn injury
    corecore