39 research outputs found

    Genetic engineering of the forage legume lotus corniculatus using Agrobacterium: mediated transformation systems

    Get PDF
    Gene transfer vectors based on the Agrobacterium tumefaciens Ti plasmid were used to develop a successful disarmed Agrobacterium tumefaciens-mediated transformation method for Lotus comiculatus. A binary vector construct, pJIT73, was used during the development of the Agrobacterium tumefaciens transformation system due to its selectable (Aph IV, nos- neo) and scorable markers. The effects of the antibiotics geneticin (G-418) and hygromycin B were studied. Use of kill curves and selection delay experiments allowed potentially suitable selection pressure parameters to be proposed. Using such selection during transformation experiments led to further optimisation of this stage of transformation. The influence of plant hormones on the regeneration of Lotus comiculatus explants was investigated and a modification of an established protocol using leaf explants was introduced as an attempt to reduce the overall time of regeneration. Various explants were used but leaf pieces were chosen as the most suitable explant on which to focus research. So, through alteration of various stages, including length of cocultivation and subsequent decontamination within the transformation process, a successful method was developed. Experiments indicated the optimum Agrobacterium tumefaciens strain to be used with Lotus comiculatus was the disarmed Ach5 type, LBA4404(pAL4404). Transgenic Lotus comiculatus plants were produced which expressed the scorable marker β-Glucuronidase gene (GUS) and the selectable marker for hygromycin B resistance, AphIV. Gene transfer was confirmed by Southern blotting. The new Agrobacterium tumefaciens-mediated vector system was used to introduce the cowpea trypsin inhibitor gene (CpTi) into Lotus comiculatus. However, although there was evidence for transformed callus development, no shoots were induced. By the use of previously established Agrobacterium rhizogenes-mediated system, an attempt was made to introduce the pea lectin gene (psl) into Lotus corniculatus. Hairy root regenerants were produced but genetic transfer was unconfirmed and attempted investigation of the plant - Rhizobium symbiosis involving Lotus corniculatus was not fulfilled

    Cost of hospitalised patients due to complicated urinary tract infections: a retrospective observational study in countries with high prevalence of multidrug-resistant Gram-negative bacteria: the COMBACTE-MAGNET, RESCUING study

    Get PDF
    Objective: Complicated urinary tract infections (cUTIs) impose a high burden on healthcare systems and are a frequent cause of hospitalisation. The aims of this paper are to estimate the cost per episode of patients hospitalised due to cUTI and to explore the factors associated with cUTI-related healthcare costs in eight countries with high prevalence of multidrug resistance (MDR). Design: This is a multinational observational, retrospective study. The mean cost per episode was computed by multiplying the volume of healthcare use for each patient by the unit cost of each item of care and summing across all components. Costs were measured from the hospital perspective. Patient-level regression analyses were used to identify the factors explaining variation in cUTI-related costs. Setting: The study was conducted in 20 hospitals in eight countries with high prevalence of multidrug resistant Gram-negative bacteria (Bulgaria, Greece, Hungary, Israel, Italy, Romania, Spain and Turkey). Participants: Data were obtained from 644 episodes of patients hospitalised due to cUTI. Results: The mean cost per case was 5700, with considerable variation between countries (largest value 7740 in Turkey; lowest value 4028 in Israel), mainly due to differences in length of hospital stay. Factors associated with higher costs per patient were: type of admission, infection source, infection severity, the Charlson comorbidity index and presence of MDR. Conclusions: The mean cost per hospitalised case of cUTI was substantial and varied significantly between countries. A better knowledge of the reasons for variations in length of stays could facilitate a better standardised quality of care for patients with cUTI and allow a more efficient allocation of healthcare resources. Urgent admissions, infections due to an indwelling urinary catheterisation, resulting in septic shock or severe sepsis, in patients with comorbidities and presenting MDR were related to a higher cost

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF

    Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Get PDF
    Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore