16 research outputs found

    Geochemical Sources and Availability of Amidophosphates on the Early Earth

    Get PDF
    Phosphorylation of (pre)biotically relevant molecules in aqueous medium has recently been demonstrated using water-soluble diamidophosphate (DAP). Questions arise relating to the prebiotic availability of DAP and other amidophosphosphorus species on the early earth. Herein, we demonstrate that DAP and other amino-derivatives of phosphates/phosphite are generated when Fe3P (proxy for mineral schreibersite), condensed phosphates, and reduced oxidation state phosphorus compounds, which could have been available on early earth, are exposed to aqueous ammonia solutions. DAP is shown to remain in aqueous solution under conditions where phosphate is precipitated out by divalent metals. These results show that nitrogenated analogues of phosphate and reduced phosphite species can be produced and remain in solution, overcoming the thermodynamic barrier for phosphorylation in water, increasing the possibility that abiotic phosphorylation reactions occurred in aqueous environments on early earth

    Utilisation of water soluble iridium catalysts for signal amplification by reversible exchange.

    No full text
    International audienceThe catalytic hyperpolarisation of pyridine, 3-hydroxypyridine and oxazole by the Signal Amplification By Reversible Exchange (SABRE) process is achieved by a series of water soluble iridium phosphine and N-heterocyclic carbene dihydride complexes. While the efficiency of the SABRE process in methanol-d4 solution or ethanol-d6 solution is high, with over 400-fold 1H polarisation of pyridine being produced by [Ir(H)2(NCMe)(py)(IMes)(monosulfonated-triphenylphosphine)]BF4, changing to a D2O or a D2O–ethanol solvent mixture leads to dramatically reduced activity which is rationalised in terms of low H2 solubility

    Heated gas bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules

    Get PDF
    Non-equilibrium conditions must have been crucial for the assembly of the first informational polymers of early life, by supporting their formation and continuous enrichment in a long-lasting environment. Here, we explore how gas bubbles in water subjected to a thermal gradient, a likely scenario within crustal mafic rocks on the early Earth, drive a complex, continuous enrichment of prebiotic molecules. RNA precursors, monomers, active ribozymes, oligonucleotides and lipids are shown to (1) cycle between dry and wet states, enabling the central step of RNA phosphorylation, (2) accumulate at the gas-water interface to drastically increase ribozymatic activity, (3) condense into hydrogels, (4) form pure crystals and (5) encapsulate into protecting vesicle aggregates that subsequently undergo fission. These effects occur within less than 30 min. The findings unite, in one location, the physical conditions that were crucial for the chemical emergence of biopolymers. They suggest that heated microbubbles could have hosted the first cycles of molecular evolution
    corecore