167 research outputs found

    Photobiomodulation at Defined Wavelengths Regulates Mitochondrial Membrane Potential and Redox Balance in Skin Fibroblasts

    Get PDF
    Starting from the discovery of phototherapy in the beginning of the last century, photobiomodulation (PBM) has been defined in late 1960s and, since then, widely described in different in vitro models. Robust evidence indicates that the effect of light exposure on the oxidative state of the cells and on mitochondrial dynamics, suggesting a great therapeutic potential. The translational scale-up of PBM, however, has often given contrasting and confusing results, mainly due to light exposure protocols which fail to adequately control or define factors such as emitting device features, emitted light characteristics, exposure time, cell target, and readouts. In this in vitro study, we describe the effects of a strictly controlled light-emitting diode (LED)-based PBM protocol on human fibroblasts, one of the main cells involved in skin care, regeneration, and repair. We used six emitter probes at different wavelengths (440, 525, 645, 660, 780, and 900 nm) with the same irradiance value of 0.1 mW/cm2, evenly distributed over the entire surface of the cell culture well. The PBM was analyzed by three main readouts: (i) mitochondrial potential (MitoTracker Orange staining), (ii) reactive oxygen species (ROS) production (CellROX staining); and (iii) cell death (nuclear morphology). The assay was also implemented by cell-based high-content screening technology, further increasing the reliability of the data. Different exposure protocols were also tested (one, two, or three subsequent 20 s pulsed exposures at 24 hr intervals), and the 645 nm wavelength and single exposure chosen as the most efficient protocol based on the mitochondrial potential readout, further confirmed by mitochondrial fusion quantification. This protocol was then tested for its potential to prevent H2O2-induced oxidative stress, including modulation of the light wave frequency. Finally, we demonstrated that the controlled PBM induced by the LED light exposure generates a preconditioning stimulation of the mitochondrial potential, which protects the cell from oxidative stress damage

    Neuroprotection and neuroregeneration: roles for the white matter

    Get PDF
    Efficient strategies for neuroprotection and repair are still an unmet medical need for neurodegenerative diseases and lesions of the central nervous system. Over the last few decades, a great deal of attention has been focused on white matter as a potential therapeutic target, mainly due to the discovery of the oligodendrocyte precursor cells in the adult central nervous system, a cell type able to fully repair myelin damage, and to the development of advanced imaging techniques to visualize and measure white matter lesions. The combination of these two events has greatly increased the body of research into white matter alterations in central nervous system lesions and neurodegenerative diseases and has identified the oligodendrocyte precursor cell as a putative target for white matter lesion repair, thus indirectly contributing to neuroprotection. This review aims to discuss the potential of white matter as a therapeutic target for neuroprotection in lesions and diseases of the central nervous system. Pivot conditions are discussed, specifically multiple sclerosis as a white matter disease; spinal cord injury, the acute lesion of a central nervous system component where white matter prevails over the gray matter, and Alzheimer's disease, where the white matter was considered an ancillary component until recently. We first describe oligodendrocyte precursor cell biology and developmental myelination, and its regulation by thyroid hormones, then briefly describe white matter imaging techniques, which are providing information on white matter involvement in central nervous system lesions and degenerative diseases. Finally, we discuss pathological mechanisms which interfere with myelin repair in adulthood

    Cellular approaches to central nervous system remyelination stimulation: thyroid hormone to promote myelin repair via endogenous stem and precursor cells

    Get PDF
    Brain and spinal cord repair is a very difficult task in view of the extremely limited repair capability of the mature central nervous system (CNS). Thus, cellular therapies are regarded as a new frontier for both acute and chronic neurological diseases characterized by neuron or oligodendroglia degeneration. Although cell replacement has been considered as the primary goal of such approaches, in recent years greater attention has been devoted to the possibility that new undifferentiated cells in damaged nervous tissue might also act in autocrine–paracrine fashion, regulating the micro-environment through the release of growth factor and cytokines, also regulating immune response and local inflammation. In this review, repair of demyelinating disease using endogenous cells will be discussed in view of the critical role played by thyroid hormones (THs) during developmental myelination, focusing on the following points: 1) endogenous stem and precursor cells during demyelinating diseases; 2) TH homeostasis in the CNS; 3) cellular and molecular mechanism regulated by TH during developmental myelination and 4) a working hypothesis to develop a rationale for the use of THs to improve remyelination through endogenous stem and precursor cells in the course of demyelinating diseases

    The rhythms of AMBEs (arousal-related motor behavioral episodes) in Agrypnia Excitata: a video motor analysis

    Get PDF
    In patients with Agrypnia Excitata with fatal familial insomnia (AE-FFI), oscillatory EEG rhythms appear during "pseudosleep" and during atypical REM sleep.Episodes of arousal-related motor behavioral episodes (AMBEs) with and without clearly elaborated behaviors, such as REM Behavior Disorder, constitute an intriguing finding without a known mechanism.Spinal cord involvement should be added to the manifestations of thalamo-limbic-brainstem disconnection. AMBEs can be incorporated into the context of motor abnormalities observed in FFI and other prionopathies.Fil: Garay, Arturo. Centro de Educaciones Médicas e Investigación Clínica "Norberto Quirno"; ArgentinaFil: Giardino, Daniela Laura. Centro de Educaciones Médicas e Investigación Clínica "Norberto Quirno"; ArgentinaFil: Huck Iriart, Cristián. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Blanco, Susana Alicia Ana. Ministerio de Salud. Instituto Nacional del Cáncer; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Reder, Anthony T.. University of Chicago; Estados Unido

    In vitro exposure to very low-level laser modifies expression level of extracellular matrix protein RNAs and mitochondria dynamics in mouse embryonic fibroblasts

    Get PDF
    BACKGROUND: Low-level lasers working at 633 or 670 nm and emitting extremely low power densities (Ultra Low Level Lasers - ULLL) exert an overall effect of photobiostimulation on cellular metabolism and energy balance. In previous studies, it was demonstrated that ULLL pulsed emission mode regulates neurite elongation in vitro and exerts protective action against oxidative stress. METHODS: In this study the action of ULLL supplied in both pulsed and continuous mode vs continuous LLL on fibroblast cultures (Mouse Embryonic Fibroblast-MEF) was tested, focusing on mitochondria network and the expression level of mRNA encoding for proteins involved in the cell-matrix adhesion. RESULTS: It was shown that ULLL at 670 nm, at extremely low average power output (0.21 mW/ cm(2)) and dose (4.3 mJ/ cm(2)), when dispensed in pulsed mode (PW), but not in continuous mode (CW) supplied at both at very low (0.21 mW/cm(2)) and low levels (500 mW/cm(2)), modifies mitochondria network dynamics, as well as expression level of mRNA encoding for selective matrix proteins in MEF, e.g. collagen type 1α1 and integrin α5. CONCLUSIONS: We suggest that pulsatility, but not energy density, is crucial in regulating expression level of collagen I and integrin α5 in fibroblasts by ULLL

    Sentidos e indicios de vida de las prácticas religiosas urbanas de las mujeres laicas. Estudio de casos: parroquia santa maría de la paz y parroquia San Nicolás de Bari pastoral urbana, 2011-2012.

    Get PDF
    La investigación enfoca los sentidos e indicios de vida de las prácticas religiosas de las mujeres que asisten a dos parroquias de la ciudad: Santa María de la Paz, ubicada en los barrios del noroeste, y San Nicolás de Bari, emplazada en la zona periférica noreste de la Ciudad de Córdoba. A modo de hipótesis se plantea la emergencia de nuevos modos de vinculación y de pertenencia a la institución parroquial de los actores sociales laicos que concurren a las mismas, mayoritariamente mujeres con niveles de instrucción medio, que presumible-mente han modificado sus modos de vivir la fe y de practicar la religión a partir de las condiciones de transformación de la cultura urbana experimentada en la Ciudad en los últimos 20 años y que dan origen, a su vez, a nuevos sentidos de la religiosidad urbana y de la construcción de las subjetividades femeninas a partir de las nuevas referencias urbanas e identitarias. El objetivo principal pretende desarrollar un trabajo interdisciplinario de análisis e interpretación de los sentidos de las prácticas de espiritualidad de los crono-topos urbanos de los laicos, particularmente de las mujeres, que asisten a estas parroquias. Se espera obtener un exhaustivo conocimiento de la realidad urbana religiosa-cultural y de las prácticas espirituales de estas dos parroquias. La realización del proyecto de investigación supone un abordaje interdisciplinario bajo una metodología hermenéutica-cualitativa que implica dos momentos: empírico (sociológico: estudio de caso)y crítico hermenéutico (teológico y filosófico)

    Time-Course Changes of Extracellular Matrix Encoding Genes Expression Level in the Spinal Cord Following Contusion Injury: A Data-Driven Approach

    Get PDF
    The involvement of the extracellular matrix (ECM) in lesion evolution and functional outcome is well recognized in spinal cord injury. Most attention has been dedicated to the "core" area of the lesion and scar formation, while only scattered reports consider ECM modification based on the temporal evolution and the segments adjacent to the lesion. In this study, we investigated the expression profile of 100 genes encoding for ECM proteins at 1, 8 and 45 days post-injury, in the spinal cord segments rostral and caudal to the lesion and in the scar segment, in a rat model. During both the active lesion phases and the lesion stabilization, we observed an asymmetric gene expression induced by the injury, with a higher regulation in the rostral segment of genes involved in ECM remodeling, adhesion and cell migration. Using bioinformatic approaches, the metalloproteases inhibitor Timp1 and the hyaluronan receptor Cd44 emerged as the hub genes at all post-lesion times. Results from the bioinformatic gene expression analysis were then confirmed at protein level by tissue analysis and by cell culture using primary astrocytes. These results indicated that ECM regulation also takes place outside of the lesion area in spinal cord injury

    Intravitreal NGF administration counteracts retina degeneration after permanent carotid artery occlusion in rat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The neurotrophin nerve growth factor (NGF) is produced by different cell types in the anterior and posterior eye, exerting a neuroprotective role in the adult life. The visual system is highly sensitive to NGF and the retina and optic nerve provides suitable subjects for the study of central nervous system degeneration. The model of bilateral carotid occlusion (two-vessel occlusion, 2VO) is a well-established model for chronic brain hypoperfusion leading to brain capillary pathology, to retina and optic nerve degeneration. In order to study if a single intravitreal injection of NGF protects the retina and the optic nerve from degeneration during systemic circulatory diseases, we investigated morphological and molecular changes occurring in the retina and optic nerve of adult rats at different time-points (8, 30 and 75 days) after bilateral carotid occlusion.</p> <p>Results</p> <p>We demonstrated that a single intravitreal injection of NGF (5 μg/3 μl performed 24 hours after 2VO ligation) has a long-lasting protective effect on retina and optic nerve degeneration. NGF counteracts retinal ganglion cells degeneration by early affecting Bax/Bcl-2 balance- and <it>c-jun- </it>expression (at 8 days after 2VO). A single intravitreal NGF injection regulates the demyelination/remyelination balance after ischemic injury in the optic nerve toward remyelination (at 75 days after 2VO), as indicated by the MBP expression regulation, thus preventing optic nerve atrophy and ganglion cells degeneration. At 8 days, NGF does not modify 2VO-induced alteration in VEFG and related receptors mRNA expression.</p> <p>Conclusion</p> <p>The protective effect of exogenous NGF during this systemic circulatory disease seems to occur also by strengthening the effect of endogenous NGF, the synthesis of which is increased by vascular defect and also by the mechanical lesion associated with NGF or even vehicle intraocular delivery.</p

    Biologia e genetica del podocita

    Get PDF
    Progresses in podocyte biology have been strictly connected with genetic advances; the identification of genes mutated in familial and sporadic forms of nephrotic syndrome has been followed by functional studies of the encoded proteins, revealing numerous properties of the cell. The molecules uncovered so far belong to three main categories: a) proteins located at the slit diaphragm, the intercellular junction which laterally connects podocyte processes and is responsible for selectivity of the glomerular filter, b) molecules involved in regulation of actin dynamics, which are essential for the maintenance of podocyte structure and function, and c) molecules belonging to intracellular organelles, such as mitochondria and lysosomes, which are central players in podocyte metabolism. Considering the key role of the podocyte in health and disease of the glomerular filter, better knowledge of this cell is a pre-requisite for developing targeted therapies of glomerular diseases

    Molecular mechanisms of skin wound healing in non-diabetic and diabetic mice in excision and pressure experimental wounds

    Get PDF
    Experimental models for chronic skin lesions are excision and pressure ulcer, defined as "open" and "closed" lesions, respectively, only the latter characterized by tissue hypoxia. Moreover, systemic diseases, such as diabetes mellitus, affect wound repair. Thus, models for testing new therapies should be carefully selected according to the expected targets. In this study, we present an extensive and comparative histological, immunohistochemical, and molecular characterization of these two lesions in diabetic (db/db) and non-diabetic (C57BL/6 J) mice. In db/db mice, we found significant reduction in PGP9.5-IR innervation, reduction of capillary network, and reduced expression of NGF receptors. We found an increase in VEGF receptor Kdr expression, and the PI3K-Akt signaling pathway at the core of the altered molecular network. Db/db mice with pressure ulcers showed an impairment in the molecular regulation of hypoxia-related genes (Hif1a, Flt1, and Kdr), while extracellular matrix encoding genes (Itgb3, Timp1, Fn1, Col4a1) were upregulated by hyperglycemia and lesions. Overall, the molecular analysis suggests that db/db mice have a longer inflammatory phase of the wound repair process, delaying the progression toward the proliferation and remodeling phases
    corecore