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Abstract
Brain and spinal cord repair is a very difficult task in view of the extremely limited repair capability of the mature central

nervous system (CNS). Thus, cellular therapies are regarded as a new frontier for both acute and chronic neurological

diseases characterized by neuron or oligodendroglia degeneration. Although cell replacement has been considered as

the primary goal of such approaches, in recent years greater attention has been devoted to the possibility that new

undifferentiated cells in damaged nervous tissue might also act in autocrine–paracrine fashion, regulating the micro-

environment through the release of growth factor and cytokines, also regulating immune response and local

inflammation. In this review, repair of demyelinating disease using endogenous cells will be discussed in view of the

critical role played by thyroid hormones (THs) during developmental myelination, focusing on the following points: 1)

endogenous stem and precursor cells during demyelinating diseases; 2) TH homeostasis in the CNS; 3) cellular and

molecular mechanism regulated by TH during developmental myelination and 4) a working hypothesis to develop a

rationale for the use of THs to improve remyelination through endogenous stem and precursor cells in the course of

demyelinating diseases.
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Introduction

Brain and spinal cord lesions have an extremely limited
repair capability and the natural history of neuro-
degenerative diseases is not significantly modified by
current therapies. Thus, the possible use of cell therapy
has generated new expectations. However, the idea of
simply replacing cells in order to substitute lost neurons
or restoring a functionally competent myelin sheath
and prevent neurodegeneration is wholly simplistic in
view of the complex pathology of these diseases. The
very poor homing and engrafting capability of trans-
planted cells has dampened the exciting expectations
aroused by the capability of embryonic and adult
somatic stem cells to differentiate into many different
cell types. Problems such as the route of cell delivery,
choice of administration timing, source and type of
cells, differentiation degree, are all topics that have
raised a number of unsolved questions. As an
alternative to cell transplant, strategies aimed at
improving the self-repair capability and/or neuropro-
tection through endogenous stem and precursor cells
are currently under active investigation, also in view of
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safety issues. This short review deals with the latter
approach, focusing on multiple sclerosis (MS), i.e. the
most diffuse demyelinating disease of the central
nervous system (CNS), and on the critical role played
by thyroid hormones (THs) in developmental myelina-
tion and thus, possibly, in remyelination.
MS: a puzzling disease in which myelin
repair fails

MS is an inflammatory demyelinating disease of the
CNS with unknown aetiology, which progresses over
decades, ultimately leading to permanent motor
disabilities, cognitive and affective disorders (Compston
& Coles 2002). It is the most frequent non-traumatic
disabling neurological disease among young adults,
with 12 000 new diagnoses per year in the United States
alone (Hirtz et al. 2007).

Different pathogenic events involving many cell types
occur in the course of the disease. According to the
classical view, inflammation and immune attack due to
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CNS invasion by peripheral Th1 lymphocytes are pre-
eminent in the early phase of the disease; then
demyelination and oligodendrocyte (OL) death pre-
vails, leading to the lesion of the myelin sheaths and
the appearance of multiple areas of demyelination
widespread in the white and grey matters of the entire
CNS. It has been also proposed that the early apoptotic
death of OLs triggers microglial activation, with Th1
invasion as a secondary event (Barnett & Prineas 2004,
Barnett & Sutton 2006). In any case, axonal pathology
and neuron death have been recognized as major early
events in the chronology of disabilities, correlating
with both permanent disabilities and brain atrophy
in advanced MS (Lassmann et al. 2007). Several
pathogenic processes, such as inflammation, immune
reaction, demyelination, OL death, axonal damage and
neuron death, follow each other and overlap over
the long course of the disease, all providing possible
targets for therapeutic intervention. Indeed, several
drug combinations are under active investigation as
potential disease-modifying therapies (Lopez-Diego &
Weiner 2008).

Myelin repair is possible and may be effective also in
terms of functional outcome, as it is the only truly
competent repair mechanism operating in the mature
CNS (Miller & Mi 2007, Franklin & Ffrench-Constant
2008, McTigue & Tripathi 2008). This capability is
largely guaranteed by the presence of a relatively
recently described cell population in the CNS, which
is identified by the presence of the membrane-
associated chondroitin sulphate proteoglycan (NG2)
and the a receptor for platelet-derived growth factor
(PDGFaR). These cells, which are not astrocytes, OLs or
microglial cells, were originally identified as oligoden-
drocyte precursor cells (OPCs; Nishiyama et al. 1999,
Dawson et al. 2000). OPCs are generated during
development (de Castro & Bribián 2005) and migrate
over the entire CNS during late development, so that
they are disseminated in the white and grey matter of
the mature CNS, where they account for 5–8% of the
total cell population (Levine et al. 2001). These cells
have the remarkable capability of proliferating and
migrating in the case of injury, and also of being able to
differentiate into mature myelinating OLs (Baracskay
et al. 2007). Moreover, new OPCs might be also
generated by precursor cells, which are located in
tissue niches in the mature CNS, including the
subventricular zone (SVZ; Komitova et al. 2009) and
the vascular niche (Arai & Lo 2009). The SVZ is the
largest germinative zone in the adult brain, which
contains a well-characterized stem cell niche. While
most studies highlight the neurogenic potential of
progenitors, recent data indicate that SVZ cells become
reactivated in response to different pathological cues,
such as trauma, ischaemia, neurodegeneration, inflam-
mation and demyelination. A severe desegregation of
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the niche, with enhanced proliferation and recruitment
of progenitors into myelin lesions, has been demon-
strated in experimental models of demyelination in
rodents (Calzà et al. 1998a,b, Picard-Riera et al. 2002)
and in MS (Nait-Oumesmar et al. 2007). Inflammation
seems to be critical for activation of OPCs and
progenitors and, ultimately, for successful myelin repair
(Calzà et al. 2005, McQualter & Bernard 2007).
Remyelination is observed in areas of active inflam-
mation in MS (Foote & Blakemore 2005, Setzu et al.
2006), whereas it is impaired in mice lacking proin-
flammatory cytokines (Mason et al. 2001) or in the case
of macrophage depletion (Kotter et al. 2005, Schonberg
et al. 2007). At the same time, as a Janus phenomenon,
chronic inflammation is detrimental in many patho-
logical conditions leading to excitoxic lesion and
altered redox balance (Sanders & De Keyser 2007),
and also impairs the capability of progenitors to
generate new OLs (Pluchino et al. 2008).

In spite of the fact that a significant number of OPCs
also newly generated from the SVZ are present and
proliferate in early lesions in MS (Wolswijk 2002, Wilson
et al. 2006), for some unknown reason OPC differen-
tiation into myelinating OLs is blocked (Kuhlmann
et al. 2008) and remyelination progressively fails in MS.
The inefficiency or failure of myelin-forming OLs to
remyelinate axons and preserve axonal integrity
remains a major impediment of the repair of MS
lesions and the factor principally responsible for axonal
and neuronal degeneration, leading to chronic dis-
ability and brain and spinal cord atrophy. The reason
for incompetent myelin repair in MS is still obscure
(Miller & Mi 2007, Rodriguez 2007, Dubois-Dalcq et al.
2008). Successful remyelination requires an orche-
strated interplay among OPCs, extracellular matrix
and axons. OPCs need to be appropriate in number, in
the right position and prone to differentiate into
mature OLs; the extracellular matrix, which provides
the tissue architecture, has to properly regulate
intercellular communication and cellular migration;
axons have to provide appropriate membrane and
soluble signals to OPCs (Camara & ffrench-Constant
2007, Simons & Trotter 2007). Moreover, other
cellular and molecular players, including ependymal,
endothelial, peripheral inflammatory cells, microglia,
astrocytes, hormones, growth factors, etc. are in the
arena of the ‘battle between destruction and repair’ in
MS (McQualter & Bernard 2007, Rodriguez 2007).
Cell therapy to repair lesions in MS: in
search of a rationale

Autologous hematopoietic cell transplantation has
been proposed for immune modulation/ablation in
MS. Clinical trials have been completed and others
www.endocrinology-journals.org
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are in progress. This type of cell therapy is not
considered in this review. Stem cell transplantation
has been also proposed to replace lost OLs also in
MS, and tested in different rodent models of demyeli-
nation. Different cell types were used, deriving from
syngenic, allogenic or xenogenic donors, including
embryonic stem cells and adult somatic cells. Adult
somatic stem cells, such as neural, hematopoietic and
mesenchymal stem cell, but also other cell types, such as
olfactory ensheathing cells, Schwann cells and differ-
entiated OLs have been proposed (Lindvall & Kokaia
2006, Aharonowiz et al. 2008, Chandran et al. 2008,
Duncan 2008, Duncan et al. 2008, Einstein & Ben-Hur
2008, Hommes 2008, Karussis & Kassis 2008, Kulbatski
et al. 2008, Payne et al. 2008, Sher et al. 2008, Yang et al.
2009). Also, more recently, autologous induced plur-
ipotent stem cells appeared on the scene (Abeliovich &
Doege 2009).

In view of the fact that multifocal lesions inMS spread
from the spinal cord to the optic nerve, the first issue to
address was the route of administration in order to allow
cells to penetrate the blood–brain barrier and reach
the lesion sites. Intracerebroventricular and multiple
intraparenchymal injections were used, but also i.v.
peripheral administration, since inflammation renders
the blood–brain barrier permeable in defined time-
windows during the disease (Muller et al. 2005). Even if
it is accepted that donor cells migrate preferentially to
the site of tissue injury also after i.v. system adminis-
tration, currently available data suggest that only a small
percentage of systemically administered cells migrate in
the CNS and few of them differentiate into myelinating
cells (Pluchino et al. 2003).

This is largely due to the intrinsic properties of
mature nervous tissue. In spite of the considerable
structural and functional plasticity required to guaran-
tee the normal functioning of the CNS, the possibility
of structural rewriting after lesions also involving
exogenous cells is extremely limited due to the intrinsic
properties of cellular players and, probably even more
important, due to the non-permissive adherent and
soluble molecules that are present in the extracellular
micro-environment. In the meantime, recent data
regarding the beneficial effects of cell therapy in
various animal models of demyelinating diseases
indicate that transplanted or i.v injected stem cells
possibly exert a positive effect through mechanisms
other than cell replacement, such as attenuating
deleterious inflammation, protecting remaining cells
from degeneration, providing trophic or ‘chaperone’
support to the injured tissue and enhancing endogen-
ous recovery processes (Pluchino et al. 2005, Einstein
et al. 2007, Rosser et al. 2007).

At the same time, another obvious therapeutic
approach is the attempt to improve myelin self-
repair capability by unblocking OPCs and pushing
www.endocrinology-journals.org
them toward becoming mature myelinating OLs
(Dubois-Dalcq et al. 2005). They are directed toward
antagonizing myelin inhibiting factors, such as LINGO
(Rudick et al. 2008) or boosting promoting factors,
such as THs.
Embryology offers precious advice for
myelin repair strategies based on
endogenous stem and precursor cells

Cellular and molecular events in successful myelin
repair in adult CNS derive from the recapitulation of
developmental myelination and lead to the synthesis of
new myelin to ensheathe naked axons (Miller & Mi
2007). Molecular, cellular and morphogenic processes
during myelination require a spatially, temporally and
quantitatively orchestrated sequence of genetically and
epigenetically driven events, which also includes
exposure to hormones and vitamins. THs play a key
role in the development in all animal species and are
crucial in early brain development, when proliferation
andmigration are predominant, and in later stages, also
postnatally, when the maturation of different cell types,
initiation of axonal and dendritic growth, myelination
and synapse formation take place (Oppenheimer &
Schwartz 1997, Koibuchi & Chin 2000, Howdeshell
2002, Koenig & Neto 2002, Boelaert & Franklyn 2005).
TH and CNS

Thyroxine (T4) is the principal product of the thyroid
gland and the most abundant circulating TH; however,
3,3 0,5-triiodothyronine (T3) is the active form (Fig. 1).
Transthyretin, synthesized by the choroid plexuses
(CP), has an important role in transporting T4 from
blood to cerebrospinal fluid and to the brain
(Chanoine et al. 1992, Chen et al. 2006, Kassem et al.
2006), where all cell types are TH-sensitive. Because of
the lipophilic nature of TH, it was thought that it
traversed the plasma membrane by simple diffusion.
However, in the past decade, membrane transport
systems for TH have been demonstrated, i.e. organic
anion transporters and amino acid transporters, among
which MCT8 is strongly expressed in the CP, capillary
endothelial cells and selected neuronal populations
(Jansen et al. 2005, Taylor & Ritchie 2007, Heuer &
Visser 2009). The biological activity of TH on target
cells is determined by intracellular T3 concentration,
which is dependent on the level of circulating T4 and
T3, the presence of transporters on the plasma
membrane and the activity of tissue specific deiodinases
(Ds). Three distinct tissue-specific Ds have been
identified (Gereben et al. 2008): D2 is the active isoform
in the brain, converting T4 into T3, whereas D3 converts
T3 into the inactive rT3. Most classic TH actions are
Journal of Molecular Endocrinology (2010) 44, 13–23



Figure 1 The cartoon summarizes the molecular and cellular players that guarantee a
proper thyroid hormone signalling in the central nervous systems. aVb3, integrin aVb3;
D2, type 2 deiodinase; D3, type 3 deiodinase; HAT, histone transacetylase activity;
MAPK, mitogen-activated protein (MAP) kinases; MCT8, monocarboxylate transporter 8;
OATP1C1, organic anion transporting polypeptide 1C1; OPC, oligodendrocyte precursor
cell; rT3, 3,3

0,5 0-triiodothyronine; RXR, retinoid X receptor; T3, 3,5,3
0-triiodothyronine; T4,

thyroxine; TR, nuclear thyroid hormone receptor.
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genomically mediated by T3 binding to nuclear
receptors (TRs), which belong to the nuclear receptor
superfamily (Yen 2001). TRa and TRb genes encode for
TRs. Alternative splicing of TRa mRNA gives rise to
TRa1 and TRa2, and the expression of the alternative
DNA strand yields Ref-Erb-Aa (Aa1, Aa2), but neither
TRa2 nor Ref-Erb-A binds T3. Likewise, the alternative
activation of promoters in the case of TRbmRNA yields
TRb1, TRb2 and TRb3. More recently, two additional
rat TRb isoforms, TRb3 and TRDb3, have been cloned
(Williams 2000). The various TR isoforms are expressed
in temporospatial-specific patterns during develop-
ment and in distinct ratios in adult tissues and different
cell types, suggesting that TR subtypes and isoforms
play different roles in cell proliferation, differentiation,
growth and maturation (Forrest et al. 1990, 1991,
Puymirat et al. 1992, Sarlieve et al. 2004, Lemkine et al.
2005; Fig. 2). TRs have a central DNA-binding domain
containing two ‘zinc fingers’ and a carboxy-terminal
ligand-binding domain (LBD) as well as a domain
coupling with another T3 receptor or other nuclear
receptors (e.g. retinoic acid X receptor) to form
dimers. In most cases, interaction between the T3 and
its receptor prompts the binding of accessory protein
cofactors that either activate or repress a specific gene’s
Journal of Molecular Endocrinology (2010) 44, 13–23
transcription. Acting as transcription factors, TRs play a
vital role during embryonic development and meta-
morphosis, regulating cell cycle, cell growth and
maturation (Calzà et al. 2000, Bassett et al. 2003).
Expression of gene batteries is directly or indirectly
regulated by TR in the brain and peripheral tissues
(Dong et al. 2009). They include transcription factors,
intracellular signalling molecules, hormones, such as
GH and thyrotrophin-releasing hormone, cell-specific
genes, such as the cerebellar Purkinje cell protein-2 and
OL-specific genes (Calzà et al. 1997, Bernal et al. 2003).

Finally, a plasma membrane receptor site for TH on
integrin aVb3, which is linked by signal-transducing
mitogen-activated protein kinase to mitogen-activated
protein kinase-mediated intranuclear events, has been
identified, opening up a completely new perspective for
TH’s role in architectural sculpture and tissue and
organ maintenance (Calzà et al. 1997, Davis et al. 2005,
Visser et al. 2008).
TH and CNS myelination

Myelination is a TH-dependent process (Bernal 2002,
2007, Zoeller & Rovet 2004, Darras 2008). Studies in
genetically modified animals (Baas et al. 2002, O’Shea &
www.endocrinology-journals.org



Figure 2 The expression of the different thyroid hormone receptor
isoforms is temporally and spatially regulated in the CNS.
The graph illustrates the expression of TRa 1, TRa 2, TRb 1 in
the cerebellum at post-natal days 2/3, 14, 30 and 135 in the
cerebellum of rats, as measured by real-time PCR, in which
the expression level observed in adult rats (P135) is 1.
The expression of a isoforms is higher in early post-natal age,
whereas b1 increases post-natally.
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Williams 2002), including analysis of myelination
in hypothyroid and hyperthyroid animals (Jagannathan
et al. 1998, Obregon et al. 2007), have provided
abundant evidence that TH plays an important part in
regulating OL lineage and maturation in vivo. THs
induce more OLs to form from multipotent neural
stem cells (Rogister et al. 1999, Fernández et al. 2004b)
and regulate several stages of OL development and
maturation (Baas et al. 1997). Early in development, TH
functions as an instructive agent, triggering OPCs
(O-2A cell) cell cycle exit in close cooperation with
platelet-derived growth factor (PDGF; Durand et al.
1997, Durand & Raff 2000, Lu et al. 2008). According to
the hypothesis developed by Raff’s group for OL
generation and maturation (Durand & Raff 2000, Raff
2006) and further confirmed by other groups for
different cell types (Papaioannou et al. 2007, Tsui et al.
2008), T3 is a major component of the molecular
machinery that regulates OPC proliferation and
differentiation through a mitogen-dependent intrinsic
cell timer. When OPCs proliferate, they become
sensitive to T3 after eight cell divisions (or correspond-
ing time), probably because of a cell cycle-dependent
expression of TRs (Maruvada et al. 2004). T3 stops cell
division leading to terminal differentiation at appro-
priate times. More generally, T3 seems to be part of the
complex timing molecular system that regulates
fundamental cell activities, including cell cycle, in
view of cellular programming andmicro-environmental
signals (Furlow & Neff 2006; Fig. 3).

The TR isoform involved in proliferation arrest is still
disputed: the b1 isoform increases parallel to p27
during OL differentiation (Gao et al. 1998), but
transfection experiments in mouse fibroblast have
www.endocrinology-journals.org
indicated that TRa but not TRb causes the drastic
arrest of proliferation (Sarlieve et al. 2004). A cell cycle-
dependent balance among the different TR isoforms
could regulate the differential hormonal sensitivity and
thus the transcriptional response to T3 in the different
phases of the cell cycle (Maruvada et al. 2004). This is
true not only during development, but also in mature
CNS. TRa expression seems to decline as soon as OPCs
progress toward myelinating OLs, whereas TRb1 seems
to be associated with terminal maturation (Sarlieve et al.
2004). Finally, THs stimulate the morphological and
functional maturation of OLs by stimulating the
expression of various genes, such as the myelin-OL
glycoprotein, myelin basic protein (MBP) and gluta-
mine synthase (Rodriguez-Pena 1999, Baumann &
Pham-Dinh 2001).
TH and CNS remyelination

In view of the key role of TH in developmental
myelination, and since successful remyelination is a
recapitulation of developmental myelination (Miller &
Mi 2007), an appropriate TH drive should be critical
also for remyelination in MS. Thus, we have extensively
explored the use of THs to favour oligodendroglial
lineage and maturation from endogenous precursors in
order ultimately to improve remyelination in animal
models of MS. Our approach attempts to combine
cellular and molecular notions regarding the role of
TH in oligodendroglial commitment from undiffer-
entiated precursors and myelination during develop-
ment, and an accurate knowledge and use of the animal
models of MS (Calzà et al. 2005). In particular, we
focused on two facts that seem to be critical in
remyelination failure in MS. First, there is an extensive
proliferation of OPCs (and progenitors in the SVZ)
during the acute phase of experimental allergic
encephalomyelitis (EAE) and in fresh MS plaques.
Second, proliferating OPCs are unable to withdraw cell
cycle and progress toward mature myelinating OLs; this
differentiation block has been indicated as a cause of
remyelination failure (Kuhlmann et al. 2008).

This altered cell regulation is possibly related to the
exposure to a cytokine mix due to early inflammation.
Exposure to cytokine mix including interferon-g
(IFN-g), tumour necrosis factor-a (TNF-a) and inter-
leukin-1b, which are those found in the inflammatory
phase in EAE and MS (Frohman et al. 2006), increases
the number of OPCs, blocking their differentiation
(Kuhlmann et al. 2008). Moreover, exposure of OPCs to
IFN-g prevents differentiation and cell cycle withdrawal,
and significantly attenuates MBP expression (Chew
et al. 2005). Prolonged exposure to proinflammatory
cytokines further impairs the capability of progenitors
to generate OPCs (Pluchino et al. 2008), thus con-
tributing to OPC depletion in chronic lesions.
Journal of Molecular Endocrinology (2010) 44, 13–23



Figure 3 Oligodendrocyte generation in vitro (A–D) and in vivo (E–H). Mature
oligodendrocytes may be derived from neural stem cells obtained from the subventricular
zone of adult mammals. When cultured in the presence of mitogens, neural precursors
proliferate in clustered aggregates (A); as soon as mitogens are withdrawn, cells
spontaneously differentiate, first forming undifferentiated precursors (B: nestin-positive),
then the main cell types of the CNS. The transition from OPCs to OLs requires a complex
molecular machinery, including intrinsic and extrinsic elements (see text). OPCs are
identified by NG2-positivity (C) and mature OLs by CNPase-immunoreactivity and both
show a competent morphology of the respective phenotype. OPCs can also be identified in
tissue section by NG2-positivity, in both the grey and the white matter (E and F). When
observed at higher magnifications, these cells appear small, with finely branched short
elongations (F); when activated, they withdraw the elongation and express proliferation-
associated nuclear antigen, i.e. MCM2 (G). During remyelination, NG2 cells envelop
CNPase-positive myelin sheaths, as illustrated by confocal microscopy (H). *, myelinated
axon; #, vessel. CNPase, 2 0,3 0-cyclic nucleotide 3 0-phosphodiesterase; EGF, epidermal
growth factor IGF1; insulin-like growth factor 1; MCM2, minichromosome maintenance
complex component 2; NG2, chondroitin sulphate proteoglycan; OCPs, oligodenrocyte
precursor cells; PDGF(Ra), platelet-derived growth factor (receptor alpha); shh, Sonic
hedgehog; T3, 3,5,3

0-triiodothyronine; TGFb, transforming growth factor b.
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A proinflammatory cytokine mix could be also
responsible for an inappropriate TH-drive of OPC
maturation. Indeed, one accepted concept is that TH
action at cellular level (but also T3 serum level) is locally
regulated by D activity and TR expression, and this is
relatively independent of TH serum concentration
(Bianco & Kim 2006, Gereben et al. 2008, St Germain
et al. 2009). In particular, D2 activation increases
intracellular T3 concentration, and this saturates
local TRs, significantly regulating transcription of
T3-responsive genes (Gereben et al. 2008). The opposite
effect is produced by D3 activation. Proinflammatory
cytokines are able to alter Ds activity, thus leading
to a decreased local T3 production and reduced
rT3 degradation, a biochemical condition leading to
local hypothyroidism (Papanicolau 2000). Proinflam-
matory cytokines also inhibit TRb1 gene expression
(Tauchmanovà et al. 2005, Kwakkel et al. 2007).
A reduced T3 production by D2 inhibition or due to a
dysregulation of TR expression triggered by interleukin
1b and TNFa has been described in the hypothalamus
(Boelen et al. 2004), hepatic cells (Boelen et al. 2006,
Kwakkel et al. 2007) and pituitary cells (Baur et al. 2000).
Journal of Molecular Endocrinology (2010) 44, 13–23
Immune activation and brain injury itself decreases the
activity of D2 (Fekete et al. 2004, Margaill et al. 2005).
According to this hypothesis, a decrease in tissue
availability of T3 or an impairment of nuclear receptors
or TH transporter expression due to inflammation
deprives OPCs of a key signal for cell cycle exit and
maturation into myelinating OLs.

This could explain the beneficial effects of TH
administration on the clinical and pathological
evolution of EAE and cuprizone demyelination as
observed by us and others. We have shown that TH
administration improves EAE clinical course and the
remyelination process in Lewis and Dark-Agouty rats
and in the non-human primate Callithrix jacchus
(marmoset), favouring remyelination and neuroprotec-
tion without resulting in hyperthyroidism (Calzà et al.
2002, 2005, Fernández et al. 2004a,b, Giardino et al.
2007). This effect occurs when TH is administered in
the acute phase of the disease, when OPCs and
progenitors proliferate actively (Calzà et al. 1998a,b).
We found that TH treatment reduces the number of
proliferating cells in SVZ and spinal cord, and favours
OPC differentiation in EAE rats. The in vivo formation
www.endocrinology-journals.org
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of new OLs has been tracked using different markers
for OPC differentiation, such as oligodendroglial
committed precursor (nestin and PSA-NCAM), A2B5
and PDGFRa as progenitor and pre-OL; O4 as pre-OL
and immature OL; O4, NG2 and MBP as non-
myelinating and myelinating mature OL. TH treatment
induces the onset of O4-positive cells and up-regulation
of A2B5-IR and PDGFRa in EAE, but not in control
animals. T3 administration completely restores the
capability to produce MBP (mRNA and protein),
which reflects a mature stage of the OL and is impaired
in EAE. Finally, myelin organization and sheath
thickness are restored by TH treatment. Moreover, T3

also up-regulates mRNA expression of Olig1, which is
one of the early genes expressed by neural stem cells
during oligodendroglial lineage, thus suggesting that
new OPCs are formed during EAE under the T3 drive.
The clinical course of EAE rats and non-human
primates is also positively affected, as indicated by the
less severe relapse in treated animals.

Recently, the rationale proposed by us for improving
myelin self-repair through stimulation of OPCs was
successfully applied on cuprizone demyelination in rats
and mice. In particular, Franco et al. (2008) showed that
remyelination in the corpus callosum of T3-treated
rats improved markedly when compared with saline-
treated animals. In the white matter of saline-treated
demyelinated animals, OLs decreased and OPCs
increased and the SVZ showed an increase in early
progenitor cell numbers, dispersion of OPCs and
inhibition of Olig and Sonic hedgehog (Shh)
expression compared to non-demyelinated animals.
The changes triggered by demyelination were reversed
after T3 administration, confirming that THs could be
regulating the emergence of remyelinating OLs from
the pool of proliferating cells residing in the SVZ.
Harsan et al. (2008) analysed T3 effect on cuprizone
demyelination in mice, using a combination of in vivo
diffusion tensor magnetic resonance imaging (MRI)
and histological analyses. T3 restored the normal
diffusion tensor (DT)–MRI phenotype accompanied
by an improvement of clinical signs and remyelination.
T3 also increased the expression of Shh and the
numbers of Olig2- and PSA-NCAM-positive precursors
and proliferative cells.

The effect of exogenous administration of TH in
regulating the demyelination/remyelination ratio in
animal models of MSmight also involve other cell types,
as almost all animal cells are sensitive to TH. The
immune cells contain T3 (Pállinger & Csaba 2008),
supporting the view of a complex and still poorly
understood interaction between TH and immune
function (Klecha et al. 2006). TH also regulates the
expression of cytoskeleton protein during axon growth
and regeneration (Schenker et al. 2002), thus indirectly
modulating the axon-OL interplay that provides for
www.endocrinology-journals.org
proper white matter development and organization
(Berbel et al. 1994, Guadaño Ferraz et al. 1994). Finally,
astrocytes, which are critical players in the complex
scenario of inflammatory/demyelinating disease, are
the cells that produce T3 in the CNS and, at the same
time, provide a target for T3 action. TH regulates several
aspects of astrocyte differentiation and maturation,
including the production of extracellular matrix
proteins and growth factors, and thus controls neuronal
growth and neuritogenesis (Trentin 2006). T3 alters the
expression and organization of several extracellular
matrix proteins including laminin, fibronectin and
syndecan, which are produced by astrocytes
(Mendes-de-Aguiar et al. 2008). Since the extracellular
matrix 3D organization is severely altered in EAE
and MS (Maier et al. 2005), this could also be a target
for T3 effects.

In conclusion, endogenous stem and precursor cells
could represent an important resource for cell
therapies applied to myelin repair. To successfully
pursue the attempt to involve these cell populations
in self-repair, a greater knowledge of the disease’s
progression as well as of endogenous stem and
precursor cell biology is needed.
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administration favours remyelination in experimental allergic
encephalomyelitis in the non human primate marmoset (Callithrix
jacchus) 37th meeting of the Society for Neuroscience 335.2.

Guadaño Ferraz A, Escobar del Rey F, Morreale de Escobar G,
Innocenti GM & Berbel P 1994 The development of the anterior
commissure in normal and hypothyroid rats. Brain Research.
Developmental Brain Research 81 293–308.

Harsan LA, Steibel J, Zaremba A, Agin A, Sapin R, Poulet P, Guignard
B, Parizel N, Grucker D, BoehmN et al. 2008 Recovery from chronic
demyelination by thyroid hormone therapy: myelinogenesis
induction and assessment by diffusion tensor magnetic resonance
imaging. Journal of Neuroscience 28 14189–14201.

Heuer H & Visser TJ 2009 Minireview: pathophysiological
importance of thyroid hormone transporters. Endocrinology 150
1078–1083.

Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR &
Zalutsky R 2007 How common are the ‘common’ neurologic
disorders? Neurology 68 326–337.
www.endocrinology-journals.org
Hommes OR 2008 Can we pass from the experimental to the clinical
phase in MS stem cell research? Journal of the Neurological Sciences 265
136–139.

Howdeshell KL 2002 A model of the development of the brain as a
construct of the thyroid system. Environmental Health Perspectives 110
337–348.

Jagannathan NR, Tandon N, Raghunathan P & Kochupillai N 1998
Reversal of abnormalities of myelination by thyroxine therapy in
congenital hypothyroidism: localized in vivo proto magnetic
resonance spectroscopy (MRS) study. Developmental Brain Research
109 179–186.

Jansen J, Friesema EC, Milici C & Visser TJ 2005 Thyroid hormone
transporters in health and disease. Thyroid 15 57–68.

Karussis D & Kassis I 2008 The potential use of stem cells in multiple
sclerosis: an overview of the preclinical experience. Clinical
Neurology and Neurosurgery 110 889–896.

Kassem NA, Deane R, Segal MB & Preston JE 2006 Role of
transthyretin in thyroxine transfer from cerebrospinal fluid to brain
and choroid plexus. American Journal of Physiology. Regulatory,
Integrative and Comparative Physiology 291 R1310–R1315.

Klecha AJ, Genaro AM, Gorelik G, Barreiro Arcos ML, Silberman DM,
Schuman M, Garcia SI, Pirola C & Cremaschi GA 2006 Integrative
study of hypothalamus–pituitary–thyroid-immune system
interaction: thyroid hormone-mediated modulation of lymphocyte
activity through the protein kinase C signaling pathway. Journal of
Endocrinology 189 45–55.

Koenig S & Neto VM 2002 Thyroid hormone actions on neural cells.
Cellular and Molecular Neurobiology 22 517–544.

Koibuchi N & Chin WW 2000 Thyroid hormone action and brain
development. Trends in Endocrinology and Metabolism 11 123–128.

Komitova M, Zhu X, Serwanski DR & Nishiyama A 2009 NG2 cells are
distinct from neurogenic cells in the postnatal mouse subventri-
cular zone. Journal of Comparative Neurology 512 702–716.

Kotter MR, Zhao C, van Rooijen N & Franklin RJ 2005 Macrophage-
depletion induced impairment of experimental CNS remyelination
is associated with a reduced oligodendrocyte progenitor cell
response and altered growth factor expression. Neurobiological
Disorders 18 166–175.

Kuhlmann T, Miron V, Cuo Q, Wegner C, Antel J & Brück W 2008
Differentiation block of oligodendroglial progenitor cells as a cause
for remyelination failure in chronic multiple sclerosis. Brain 131
1749–1758.

Kulbatski I, Mothe AJ, Parr AM, Kim H, Kang CE, Bozkurt G &
Tator CH 2008 Glial precursor cell transplantation therapy for
neurotrauma and multiple sclerosis. Progress in Histochemistry and
Cytochemistry 43 123–176.

Kwakkel J, Wiersinga WM & Boelen A 2006 Differential involvement
of nuclear factor-kB and activator protein-1 pathways in the
interleukin-1b-mediated decrease of deiodinase type 1 and
thyroid hormone receptor b1 mRNA. Journal of Endocrinology 189
37–44.

Kwakkel J, Wiersinga WM & Boelen A 2007 Interleukin-1 beta
modulates endogenous thyroid hormone alpha gene transcription
in liver cells. Journal of Endocrinology 194 257–265.

Lassmann H, Brück W & Lucchinetti CF 2007 The immunopathology
of multiple sclerosis: an overview. Brain Pathology 17 210–218.

Lemkine GF, Raj A, Alfama G, Turque N, Hassani Z, Alegria-Prévot O,
Samarut J, Levi G & Demeneix BA 2005 Adult neural stem cell
cycling in vivo requires thyroid hormone and its a receptor. FASEB
Journal 19 863–865.

Levine JM, Reynolds R & Fawcett JW 2001 The oligodendrocyte
precursor cell in health and disease. Trends in Neurosciences 24 39–47.

Lindvall O & Kokaia Z 2006 Stem cells for the treatment of
neurological disorders. Nature 441 1094–1096.

Lopez-Diego RS & Weiner HL 2008 Novel therapeutic strategies for
multiple sclerosis – a multifaceted adversary. Nature Reviews. Drug
Discovery 7 909–925.
Journal of Molecular Endocrinology (2010) 44, 13–23
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