118 research outputs found

    Understanding the role of promoters in catalysis: operando XAFS/DRIFTS study of CeO<sub>x</sub>/Pt/Al<sub>2</sub>O<sub>3</sub> during CO oxidation

    Get PDF
    A combined operando XAFS/DRIFTS study on CeOx/Pt/Al2O3 catalysts has been performed during CO oxidation and provides insights into the changes in nanoparticle structure and adsorbed species during the reaction profile. The onset of CO2 formation is shown to be concurrent with a rapid re-oxidation of the Pt nanoparticles, evidenced by XAFS spectroscopy, and the loss of bridge bonded CO adsorbed on Pt, as shown by simultaneous DRIFTS acquisition. The continued appearance of linear bound CO on the catalyst surface is shown to remain long after catalytic light off. The interaction of Pt and CeOx is evidenced by the improved performance towards CO oxidation, compared to the non-CeOx modified Pt/Al2O3, and changes in the CO adsorption properties on Pt previously linked to Pt-CeO2 interfaces

    Insights into the Structure of Dot@Rod and Dot@Octapod CdSe@CdS Heterostructures

    Get PDF
    CdSe@CdS dot@rods with diameter around 6 nm and length of either 20, 27, or 30 nm and dot@octapods with pod diameters of ?15 nm and lengths of ?50 nm were investigated by X-ray absorption spectroscopy. These heterostructures are prepared by seed-mediated routes, where the structure, composition, and morphology of the CdSe nanocrystals used as a seed play key roles in directing the growth of the second semiconducting domain. The local structural environment of all the elements in the CdSe@CdS heterostructures was investigated at the Cd, S, and Se K-edges by taking advantage of the selectivity of X-ray absorption spectroscopy, and was compared to pure reference compounds. We found that the structural features of dot@rods are independent of the size of the rods. These structures can be described as made of a CdSe dot and a CdS rod, both in the wurtzite phase with a high crystallinity of both the core and the rod. This result supports the effectiveness of high temperature colloidal synthesis in promoting the formation of core@shell nanocrystals with very low defectivity. On the other hand, data on the CdSe@CdS with octapod morphology suggest the occurrence of a core composed of a CdSe cubic sphalerite phase with eight pods made of CdS wurtzite phase. Our findings are compared to current models proposed for the design of functional heterostructures with controlled nanoarchitecture

    Strain in epitaxial MnSi films on Si(111) in the thick film limit studied by polarization-dependent extended x-ray absorption fine structure

    Full text link
    We report a study of the strain state of epitaxial MnSi films on Si(111) substrates in the thick film limit (100-500~\AA) as a function of film thickness using polarization-dependent extended x-ray absorption fine structure (EXAFS). All films investigated are phase-pure and of high quality with a sharp interface between MnSi and Si. The investigated MnSi films are in a thickness regime where the magnetic transition temperature TcT_\mathrm{c} assumes a thickness-independent enhanced value of ≥\geq43~K as compared with that of bulk MnSi, where Tc≈29 KT_\mathrm{c} \approx 29~{\rm K}. A detailed refinement of the EXAFS data reveals that the Mn positions are unchanged, whereas the Si positions vary along the out-of-plane [111]-direction, alternating in orientation from unit cell to unit cell. Thus, for thick MnSi films, the unit cell volume is essentially that of bulk MnSi --- except in the vicinity of the interface with the Si substrate (thin film limit). In view of the enhanced magnetic transition temperature we conclude that the mere presence of the interface, and its specific characteristics, strongly affects the magnetic properties of the entire MnSi film, even far from the interface. Our analysis provides invaluable information about the local strain at the MnSi/Si(111) interface. The presented methodology of polarization dependent EXAFS can also be employed to investigate the local structure of other interesting interfaces.Comment: 11 pages, 10 figure

    Physical and chemical characterization of cerium(IV) oxide nanoparticles

    Get PDF
    Chemical composition, size and structure of the nanoparticle are required to describe nanoceria. Nanoparticles of similar size and Ce(III) content might exhibit different chemical behaviour due to their differences in structure. A simple and direct procedure based on affordable techniques for all the laboratories is presented in this paper. The combination of Raman and UV-vis spectroscopy and particle impact coulometry (PIC) allows the characterization of nanoceria of small size from 4 to 65 nm at a concentration from micromolar to nanomolar, a concentration range suitable for the analysis of lab-prepared or commercial nanoparticle suspensions, but too high for most analytical purposes aimed at nanoparticle monitoring. While the PIC limits of size detection are too high to observe small nanoparticles unless catalytic amplification is used, the method provides a simple means to study aggregation of nanoparticles in the media they are needed to be dispersed for each application. Raman spectroscopy provided information about structure of the nanoparticle, and UV-vis about their chemical behaviour against some common reducing and oxidizing agents

    Efficient Enzymatic Preparation of Flavor Esters in Water

    Get PDF
    A straightforward biocatalytic method for the enzymatic preparation of different flavor esters starting from primary alcohols (e.g., isoamyl, n-hexyl, geranyl, cinnamyl, 2-phenethyl, and benzyl alcohols) and naturally available ethyl esters (e.g., formate, acetate, propionate, and butyrate) was developed. The biotransformations are catalyzed by an acyltransferase from Mycobacterium smegmatis (MsAcT) and proceeded with excellent yields (80-97%) and short reaction times (30-120 min), even when high substrate concentrations (up to 0.5 M) were used. This enzymatic strategy represents an efficient alternative to the application of lipases in organic solvents and a significant improvement compared with already known methods in terms of reduced use of organic solvents, paving the way to sustainable and efficient preparation of natural flavoring agents

    Contrasting the EXAFS obtained under air and H-2 environments to reveal details of the surface structure of Pt-Sn nanoparticles

    Get PDF
    Understanding the surface structure of bimetallic nanoparticles is crucial for heterogeneous catalysis. Although surface contraction has been established in monometallic systems, less is known for bimetallic systems, especially of nanoparticles. In this work, the bond length contraction on the surface of bimetallic nanoparticles is revealed by XAS in H2 at room temperature on dealloyed Pt–Sn nanoparticles, where most Sn atoms were oxidized and segregated to the surface when measured in air. The average Sn–Pt bond length is found to be ∼0.09 Å shorter than observed in the bulk. To ascertain the effect of the Sn location on the decrease of the average bond length, Pt–Sn samples with lower surface-to-bulk Sn ratios than the dealloyed Pt–Sn were studied. The structural information specifically from the surface was extracted from the averaged XAS results using an improved fitting model combining the data measured in H2 and in air. Two samples prepared so as to ensure the absence of Sn in the bulk were also studied in the same fashion. The bond length of surface Sn–Pt and the corresponding coordination number obtained in this study show a nearly linear correlation, the origin of which is discussed and attributed to the poor overlap between the Sn 5p orbitals and the available orbitals of the Pt surface atoms

    Physicochemical properties of mixed micellar aggregates containing CCK peptides and Gd complexes designed as tumor specific contrast agents in MRI

    Get PDF
    New amphiphilic molecules containing a bioactive peptide or a claw moiety have been prepared in order to obtain mixed micelles as target-specific contrast agents in magnetic resonance imaging. The first molecule, C18H37CONH(AdOO)2-G-CCK8 (C18CCK8), contains a C18 hydrophobic moiety bound to the C-terminal cholecystokinin octapeptide amide (CCK 26-33 or CCK8). The second amphiphilic compound, C18H37CONHLys(DTPAGlu)CONH2 (C18DTPAGlu) or its gadolinium complex, (C18DTPAGlu- (Gd)), contains the same C18 hydrophobic moiety bound, through a lysine residue, to the DTPAGlu chelating agent. The mixed aggregates as well as the pure C18DTPAGlu aggregate, in the presence and absence of Gd, have been fully characterized by surface tension measurements, FT-PGSE-NMR, fluorescence quenching, and small-angle neutron scattering measurements. The structural characterization of the mixed aggregates C18DTPAGlu(Gd)-C18CCK8 indicates a spherical arrangement of the micelles with an external shell of 21 Å and an inner core of 20 Å. Both the DTPAGlu(Gd) complexes and the CCK8 peptides point toward the external surface. The measured values for relaxivity in saline medium at 20 MHz proton Larmor frequency and 25 °C are 18.7 mM-1 s-1. These values show a large enhancement in comparison with the isolated DTPAGlu(Gd) complex

    Size determination and quantification of engineered cerium oxide nanoparticles by flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry

    Get PDF
    Facing the lack of studies on characterization and quantification of cerium oxide nanoparticles (CeO2 NPs), whose consumption and release is greatly increasing, this work proposes a method for their sizing and quantification by Flow Field-flow Fractionation (FFFF) coupled to Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Two modalities of FFFF (Asymmetric Flow- and Hollow Fiber-Flow Field Flow Fractionation, AF4 and HF5, respectively) are compared, and their advantages and limitations discussed. Experimental conditions (carrier composition, pH, ionic strength, crossflow and carrier flow rates) are studied in detail in terms of NP separation, recovery, and repeatability. Size characterization of CeO2 NPs was addressed by different approaches. In the absence of feasible size standards of CeO2 NPs, suspensions of Ag, Au, and SiO2 NPs of known size were investigated. Ag and Au NPs failed to show a comparable behavior to that of the CeO2 NPs, whereas the use of SiO2 NPs provided size estimations in agreement to those predicted by the theory. The latter approach was thus used for characterizing the size of CeO2 NPs in a commercial suspension. Results were in adequate concordance with those achieved by transmission electron microscopy, X-ray diffraction and dynamic light scattering. The quantification of CeO2 NPs in the commercial suspension by AF4-ICP-MS required the use of a CeO2 NPs standards, since the use of ionic cerium resulted in low recoveries (99 ± 9% vs. 73 ± 7%, respectively). A limit of detection of 0.9 µg L-1 CeO2 corresponding to a number concentration of 1.8 × 1012 L-1 for NPs of 5 nm was achieved for an injection volume of 100 µL

    Supported metal nanoparticles with tailored catalytic properties through sol-immobilisation: applications for the hydrogenation of nitrophenols

    Get PDF
    The use of sol-immobilisation to prepare supported metal nanoparticles is an area of growing importance in heterogeneous catalysis; it affords greater control of nanoparticle properties compared to conventional catalytic routes e.g. impregnation. This work, and other recent studies, demonstrate how the properties of the resultant supported metal nanoparticles can be tailored by adjusting the conditions of colloidal synthesis i.e. temperature and solvent. We further demonstrate the applicability of these methods to the hydrogenation of nitrophenols using a series of tailored Pd/TiO2 catalysts, with low Pd loading of 0.2 wt%. Here, the temperature of colloidal synthesis is directly related to the mean particle diameter and the catalytic activity. Smaller Pd particles (2.2 nm, k = 0.632 min−1, TOF = 560 h−1) perform better than their larger counterparts (2.6 nm, k = 0.350 min−1, TOF = 370 h−1) for the hydrogenation of p-nitrophenol, with the catalyst containing smaller NPs found to have increased stability during recyclability studies, with high activity (>90% conversion after 5 minutes) maintained across 5 catalytic cycles

    An open access, integrated XAS data repository at Diamond Light Source

    Get PDF
    The analysis of reference materials is a fundamental part of the data analysis process, in particular for XAS experiments. The beamline users and more generally the XAS community can greatly benefit from the availability of a reliable and wide base of reference sample spectra, acquired in standard and well-characterized experimental conditions. On B18, the Core EXAFS beamline at the Diamond Light Source, in the past years we have collected a series of XAS data on well characterized compounds. This work constitutes the base for a reference sample database, available as a data analysis tool to the general XAS community. This data repository aims to complement the bare spectroscopic information with characterisation, preparation, provenance, analysis and bibliographic references, so improving the traceability of the deposited information. This integrated approach is the base of success and wide distribution of data repositories in other fields, and we hope it will provide on one side a precious facility for the training of students and researchers new to the technique, and at the same time encourage the discussion of best practices in the data analysis process. The database will be open to the contribution of experimental data from the user community, and will provide bibliographic reference information and access control
    • …
    corecore