388 research outputs found

    Pulsar Scintillation through Thick and Thin: Bow Shocks, Bubbles, and the Broader Interstellar Medium

    Full text link
    Observations of pulsar scintillation are among the few astrophysical probes of very small-scale (\lesssim au) phenomena in the interstellar medium (ISM). In particular, characterization of scintillation arcs, including their curvature and intensity distributions, can be related to interstellar turbulence and potentially over-pressurized plasma in local ISM inhomogeneities, such as supernova remnants, HII regions, and bow shocks. Here we present a survey of eight pulsars conducted at the Five-hundred-meter Aperture Spherical Telescope (FAST), revealing a diverse range of scintillation arc characteristics at high sensitivity. These observations reveal more arcs than measured previously for our sample. At least nine arcs are observed toward B1929++10 at screen distances spanning 90%\sim 90\% of the pulsar's 361361 pc path-length to the observer. Four arcs are observed toward B0355++54, with one arc yielding a screen distance as close as 105\sim10^5 au (<1<1 pc) from either the pulsar or the observer. Several pulsars show highly truncated, low-curvature arcs that may be attributable to scattering near the pulsar. The scattering screen constraints are synthesized with continuum maps of the local ISM and other well-characterized pulsar scintillation arcs, yielding a three-dimensional view of the scattering media in context.Comment: 20 pages, 14 figures. Submitted to MNRAS and comments welcome. Interactive version of Figure 12 available at https://stella-ocker.github.io/scattering_ism3d_ocker202

    Lethal Influenza Virus Infection in Macaques Is Associated with Early Dysregulation of Inflammatory Related Genes

    Get PDF
    The enormous toll on human life during the 1918–1919 Spanish influenza pandemic is a constant reminder of the potential lethality of influenza viruses. With the declaration by the World Health Organization of a new H1N1 influenza virus pandemic, and with continued human cases of highly pathogenic H5N1 avian influenza virus infection, a better understanding of the host response to highly pathogenic influenza viruses is essential. To this end, we compared pathology and global gene expression profiles in bronchial tissue from macaques infected with either the reconstructed 1918 pandemic virus or the highly pathogenic avian H5N1 virus A/Vietnam/1203/04. Severe pathology was observed in respiratory tissues from 1918 virus-infected animals as early as 12 hours after infection, and pathology steadily increased at later time points. Although tissues from animals infected with A/Vietnam/1203/04 also showed clear signs of pathology early on, less pathology was observed at later time points, and there was evidence of tissue repair. Global transcriptional profiles revealed that specific groups of genes associated with inflammation and cell death were up-regulated in bronchial tissues from animals infected with the 1918 virus but down-regulated in animals infected with A/Vietnam/1203/04. Importantly, the 1918 virus up-regulated key components of the inflammasome, NLRP3 and IL-1β, whereas these genes were down-regulated by A/Vietnam/1203/04 early after infection. TUNEL assays revealed that both viruses elicited an apoptotic response in lungs and bronchi, although the response occurred earlier during 1918 virus infection. Our findings suggest that the severity of disease in 1918 virus-infected macaques is a consequence of the early up-regulation of cell death and inflammatory related genes, in which additive or synergistic effects likely dictate the severity of tissue damage

    Thermal Testing for Cryogenic CMB Instrument Optical Design

    Full text link
    Observations of the Cosmic Microwave Background rely on cryogenic instrumentation with cold detectors, readout, and optics providing the low noise performance and instrumental stability required to make more sensitive measurements. It is therefore critical to optimize all aspects of the cryogenic design to achieve the necessary performance, with low temperature components and acceptable system cooling requirements. In particular, we will focus on our use of thermal filters and cold optics, which reduce the thermal load passed along to the cryogenic stages. To test their performance, we have made a series of in situ measurements while integrating the third receiver for the BICEP Array telescope. In addition to characterizing the behavior of this receiver, these measurements continue to refine the models that are being used to inform design choices being made for future instruments.Comment: 9 pages, 8 figures, Proceedings of SPIE 202

    Results and Limits of Time Division Multiplexing for the BICEP Array High Frequency Receivers

    Full text link
    Time-Division Multiplexing is the readout architecture of choice for many ground and space experiments, as it is a very mature technology with proven outstanding low-frequency noise stability, which represents a central challenge in multiplexing. Once fully populated, each of the two BICEP Array high frequency receivers, observing at 150GHz and 220/270GHz, will have 7776 TES detectors tiled on the focal plane. The constraints set by these two receivers required a redesign of the warm readout electronics. The new version of the standard Multi Channel Electronics, developed and built at the University of British Columbia, is presented here for the first time. BICEP Array operates Time Division Multiplexing readout technology to the limits of its capabilities in terms of multiplexing rate, noise and crosstalk, and applies them in rigorously demanding scientific application requiring extreme noise performance and systematic error control. Future experiments like CMB-S4 plan to use TES bolometers with Time Division/SQUID-based readout for an even larger number of detectors.Comment: 10 pages, 7 figures, Submitted to Journal of Low Temperature Physic
    corecore