128 research outputs found

    Contrasting roles of SPARC-related granuloma in bacterial containment and in the induction of anti–Salmonella typhimurium immunity

    Get PDF
    The role of matricellular proteins in bacterial containment and in the induction of pathogen-specific adaptive immune responses is unknown. We studied the function of the matricellular protein secreted protein, acidic and rich in cysteine (SPARC/osteonectin) in the dissemination of locally injected Salmonella typhimurium and in the subsequent immune response. We show that SPARC was required for the development of organized acute inflammatory reactions with granuloma-like (GL) features and for the control of bacterial spreading to draining lymph nodes (DLNs). However, SPARC-related GL also inhibited dendritic cell (DC) migration to the DLNs and limited the development of adaptive immune response, thus conferring increased susceptibility to the pathogen. In SPARC-deficient mice, both DC migration and antigen-specific responses were restored against bacteria, leading to protective anti–S. typhimurium immunity. This highlights a new function of matricellular proteins in bacterial infection and suggests that initial containment of bacteria can have drawbacks

    Role of IFN-gamma and IL-6 in a protective immune response to Yersinia enterocolitica in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Yersinia </it>outer protein (Yop) H is a secreted virulence factor of <it>Yersinia enterocolitica </it>(Ye), which inhibits phagocytosis of Ye and contributes to the virulence of Ye in mice. The aim of this study was to address whether and how YopH affects the innate immune response to Ye in mice.</p> <p>Results</p> <p>For this purpose, mice were infected with wild type Ye (pYV<sup>+</sup>) or a YopH-deficient Ye mutant strain (Δ<it>yopH</it>). CD11b<sup>+ </sup>cells were isolated from the infected spleen and subjected to gene expression analysis using microarrays. Despite the attenuation of Δ<it>yopH in vivo</it>, by variation of infection doses we were able to achieve conditions that allow comparison of gene expression in pYV<sup>+ </sup>and Δ<it>yopH </it>infection, using either comparable infection courses or splenic bacterial burden. Gene expression analysis provided evidence that expression levels of several immune response genes, including IFN-γ and IL-6, are high after pYV<sup>+ </sup>infection but low after sublethal Δ<it>yopH </it>infection. In line with these findings, infection of IFN-γR<sup>-/- </sup>and IL-6<sup>-/- </sup>mice with pYV<sup>+ </sup>or Δ<it>yopH </it>revealed that these cytokines are not necessarily required for control of Δ<it>yopH</it>, but are essential for defense against infection with the more virulent pYV<sup>+</sup>. Consistently, IFN-γ pretreatment of bone marrow derived macrophages (BMDM) strongly enhanced their ability in killing intracellular Ye bacteria.</p> <p>Conclusion</p> <p>In conclusion, this data suggests that IFN-γ-mediated effector mechanisms can partially compensate virulence exerted by YopH. These results shed new light on the protective role of IFN-γ in Ye wild type infections.</p

    CCR2-dependent monocyte-derived macrophages resolve inflammation and restore gut motility in postoperative ileus

    Get PDF
    Postoperative ileus (POI) is assumed to result from myeloid cells infiltrating the intestinal muscularis externa (ME) in patients undergoing abdominal surgery. In the current study, we investigated the role of infiltrating monocytes in a murine model of intestinal manipulation (IM)-induced POI in order to clarify whether monocytes mediate tissue damage and intestinal dysfunction or they are rather involved in the recovery of gastrointestinal (GI) motility.status: publishe

    The adhesion molecule L1 regulates transendothelial migration and trafficking of dendritic cells

    Get PDF
    The adhesion molecule L1, which is extensively characterized in the nervous system, is also expressed in dendritic cells (DCs), but its function there has remained elusive. To address this issue, we ablated L1 expression in DCs of conditional knockout mice. L1-deficient DCs were impaired in adhesion to and transmigration through monolayers of either lymphatic or blood vessel endothelial cells, implicating L1 in transendothelial migration of DCs. In agreement with these findings, L1 was expressed in cutaneous DCs that migrated to draining lymph nodes, and its ablation reduced DC trafficking in vivo. Within the skin, L1 was found in Langerhans cells but not in dermal DCs, and L1 deficiency impaired Langerhans cell migration. Under inflammatory conditions, L1 also became expressed in vascular endothelium and enhanced transmigration of DCs, likely through L1 homophilic interactions. Our results implicate L1 in the regulation of DC trafficking and shed light on novel mechanisms underlying transendothelial migration of DCs. These observations might offer novel therapeutic perspectives for the treatment of certain immunological disorders

    The Silent Epidemic of Diabetic Ketoacidosis at Diagnosis of Type 1 Diabetes in Children and Adolescents in Italy During the COVID-19 Pandemic in 2020

    Get PDF
    To compare the frequency of diabetic ketoacidosis (DKA) at diagnosis of type 1 diabetes in Italy during the COVID-19 pandemic in 2020 with the frequency of DKA during 2017-2019

    E prostanoid receptor 4 expressing macrophages promote the regeneration of the intestinal epithelial barrier upon inflammation

    No full text
    status: Published onlin

    The vagal innervation of the gut and immune homeostasis

    Get PDF
    The central nervous system interacts dynamically with the immune system to modulate inflammation through humoral and neural pathways. Recently, in animal models of sepsis, the vagus nerve (VN) has been proposed to play a crucial role in the regulation of the immune response, also referred to as the cholinergic anti-inflammatory pathway. The VN, through release of acetylcholine, dampens immune cell activation by interacting with α-7 nicotinic acetylcholine receptors. Recent evidence suggests that the vagal innervation of the gastrointestinal tract also plays a major role controlling intestinal immune activation. Indeed, VN electrical stimulation potently reduces intestinal inflammation restoring intestinal homeostasis, whereas vagotomy has the reverse effect. In this review, we will discuss the current understanding concerning the mechanisms and effects involved in the cholinergic anti-inflammatory pathway in the gastrointestinal tract. Deeper investigation on this counter-regulatory neuroimmune mechanism will provide new insights in the cross-talk between the nervous and immune system leading to the identification of new therapeutic targets to treat intestinal immune diseas
    • …
    corecore