68 research outputs found

    From Quantum Materials to Microsystems

    Get PDF
    : The expression "quantum materials" identifies materials whose properties "cannot be described in terms of semiclassical particles and low-level quantum mechanics", i.e., where lattice, charge, spin and orbital degrees of freedom are strongly intertwined. Despite their intriguing and exotic properties, overall, they appear far away from the world of microsystems, i.e., micro-nano integrated devices, including electronic, optical, mechanical and biological components. With reference to ferroics, i.e., functional materials with ferromagnetic and/or ferroelectric order, possibly coupled to other degrees of freedom (such as lattice deformations and atomic distortions), here we address a fundamental question: "how can we bridge the gap between fundamental academic research focused on quantum materials and microsystems?". Starting from the successful story of semiconductors, the aim of this paper is to design a roadmap towards the development of a novel technology platform for unconventional computing based on ferroic quantum materials. By describing the paradigmatic case of GeTe, the father compound of a new class of materials (ferroelectric Rashba semiconductors), we outline how an efficient integration among academic sectors and with industry, through a research pipeline going from microscopic modeling to device applications, can bring curiosity-driven discoveries to the level of CMOS compatible technology

    Hard X-ray photoemission spectroscopy: variable depth analysis of bulk, surface and interface electronic properties

    Get PDF
    The electronic properties of surfaces and buried interfaces can vary considerably in comparison to the bulk. In turn, analyzing bulk properties, without including those of the surface, is understandably challenging. Hard X-ray photoelectron spectroscopy (HAXPES) allows the well known ability of photoemission to interrogate the electronic structure of material systems with bulk volume sensitivity. This is achieved by tuning the kinetic energy range of the analyzed photoelectrons in the multi-keV regime. This unique ability to probe truly bulk properties strongly compliments normal photoemission, which generally probes surface electronic structure that is different than the bulk selected examples of HAXPES and possible implications towards the study of complex oxide-based interfaces and highly correlated systems are discussed.This work has been supported in part by CNR-INFM. The research leading to these results has received funding from the FP72007-2013 framework programme under grant NMP3-LA-2010-246102. Development of HARP Lab systems has been supported by SENTAN, JST

    Angle, spin, and depth resolved photoelectron spectroscopy on quantum materials

    Get PDF
    PK gratefully acknowledges The Royal Society for support.The role of X-ray based electron spectroscopies in determining chemical, electronic, and magnetic properties of solids has been well-known for several decades. A powerful approach is angle-resolved photoelectron spectroscopy, whereby the kinetic energy and angle of photoelectrons emitted from a sample surface are measured. This provides a direct measurement of the electronic band structure of crystalline solids. Moreover, it yields powerful insights into the electronic interactions at play within a material and into the control of spin, charge, and orbital degrees of freedom, central pillars of future solid state science. With strong recent focus on research of lower-dimensional materials and modified electronic behavior at surfaces and interfaces, angle-resolved photoelectron spectroscopy has become a core technique in the study of quantum materials. In this review, we provide an introduction to the technique. Through examples from several topical materials systems, including topological insulators, transition metal dichalcogenides, and transition metal oxides, we highlight the types of information which can be obtained. We show how the combination of angle, spin, time, and depth-resolved experiments are able to reveal “hidden” spectral features, connected to semiconducting, metallic and magnetic properties of solids, as well as underlining the importance of dimensional effects in quantum materials.PostprintPeer reviewe

    Analysis of anisotropy crossover due to oxygen in Pt/Co/MOx trilayer

    Get PDF
    Extraordinary Hall effect and X-ray spectroscopy measurements have been performed on a series of Pt/Co/MOx trilayers (M=Al, Mg, Ta...) in order to investigate the role of oxidation in the onset of perpendicular magnetic anisotropy at the Co/MOx interface. It is observed that varying the oxidation time modifies the magnetic properties of the Co layer, inducing a magnetic anisotropy crossover from in-plane to out-of-plane. We focused on the influence of plasma oxidation on Pt/Co/AlOx perpendicular magnetic anisotropy. The interfacial electronic structure is analyzed via X-ray photoelectron spectroscopy measurements. It is shown that the maximum of out-of-plane magnetic anisotropy corresponds to the appearance of a significant density of Co-O bondings at the Co/AlOx interface

    Ferroelectric control of the spin texture in germanium telluride

    Get PDF
    The electrical manipulation of spins in semiconductors, without magnetic fields or auxiliary ferromagnetic materials, represents the holy grail for spintronics. The use of Rashba effect is very attractive because the k-dependent spin-splitting is originated by an electric field. So far only tiny effects in two-dimensional electron gases (2DEG) have been exploited. Recently, GeTe has been predicted to have bulk bands with giant Rashba-like splitting, originated by the inversion symmetry breaking due to ferroelectric polarization. In this work, we show that GeTe(111) surfaces with inwards or outwards ferroelectric polarizations display opposite sense of circulation of spin in bulk Rashba bands, as seen by spin and angular resolved photoemission experiments. Our results represent the first experimental demonstration of ferroelectric control of the spin texture in a semiconductor, a fundamental milestone towards the exploitation of the non-volatile electrically switchable spin texture of GeTe in spintronic devices.Comment: 18 pages, 4 figure

    Electronically ordered ultrathin Cr2O3 on Pt(1 1 1) in presence of a multidomain graphene intralayer

    Get PDF
    In the last decade, reducing the dimensionality of materials to few atomic layers thickness has allowed exploring new physical properties and functionalities otherwise absent out of the two dimensional limit. In this regime, interfaces and interlayers play a crucial role. Here, we investigate their influence on the electronic properties and structural quality of ultrathin Cr2O3 on Pt(111), in presence of a multidomain graphene intralayer. Specifically, by combining Low-Energy Electron Diffraction, X-ray Photoelectron Spectroscopy and X-ray Absorption Spectroscopy, we confirm the growth of high-quality ultrathin Cr2O3 on bare Pt, with sharp surface reconstructions, proper stoichiometry and good electronic quality. Once a multidomain graphene intralayer is included at the metal/oxide interface, the Cr2O3 maintained its correct stoichiometry and a comparable electronic quality, even at the very first monolayers, despite the partially lost of the morphological long-range order. These results show how ultrathin Cr2O3 films are slightly affected by the interfacial epitaxial quality from the electronic point of view, making them potential candidates for graphene-integrated heterostructures

    Magnetic Proximity Effect as a Pathway to Spintronic Applications of Topological Insulators

    Full text link
    Spin-based electronics in topological insulators (TIs) is favored by the long spin coherence1,2 and consequently fault-tolerant information storage. Magnetically doped TIs are ferromagnetic up to 13 K,3 well below any practical operating condition. Here we demonstrate that the long range ferromagnetism at ambient temperature can be induced in Bi2-xMnxTe3 by the magnetic proximity effect through deposited Fe overlayer. This result opens a new path to interface-controlled ferromagnetism in TI-based spintronic devices.Comment: accepted in Nano Letter

    Direct-ARPES and STM investigation of FeSe thin film growth by Nd:YAG laser

    Get PDF
    Funding: D.M. acknowledges the receipt of a fellowship from the ICTP Programme for Training and Research in Italian Laboratories, Trieste, Italy. R.A. and A.B. acknowledges the support by the Austrian Science Fund (FWF) through Projects No. P26830, No. P31423 and H2020 NFFA-Europe 654360.Research on ultrathin quantum materials requires full control of the growth and surface quality of the specimens in order to perform experiments on their atomic structure and electron states leading to ultimate analysis of their intrinsic properties. We report results on epitaxial FeSe thin films grown by pulsed laser deposition (PLD) on CaF2 (001) substrates as obtained by exploiting the advantages of an all-in-situ ultra-high vacuum (UHV) laboratory allowing for direct high-resolution surface analysis by scanning tunnelling microscopy (STM), synchrotron radiation X-ray photoelectron spectroscopy (XPS) and angle-resolved photoemission spectroscopy (ARPES) on fresh surfaces. FeSe PLD growth protocols were fine-tuned by optimizing target-to-substrate distance d and ablation frequency, atomically flat terraces with unit-cell step heights are obtained, overcoming the spiral morphology often observed by others. In-situ ARPES with linearly polarized horizontal and vertical radiation shows hole-like and electron-like pockets at the Γ and M points of the Fermi surface, consistent with previous observations on cleaved single crystal surfaces. The control achieved in growing quantum materials with volatile elements such as Se by in-situ PLD makes it possible to address the fine analysis of the surfaces by in-situ ARPES and XPS. The study opens wide avenues for the PLD based heterostructures as work-bench for the understanding of proximity-driven effects and for the development of prospective devices based on combinations of quantum materials.Publisher PDFPeer reviewe

    Visible Light Effects on Photostrictive/Magnetostrictive PMN‐PT/Ni Heterostructure

    Get PDF
    The possibility of modifying the ferromagnetic response of a multiferroic heterostructure via fully optical means exploiting the photovoltaic/photostrictive properties of the ferroelectric component is an effective method for tuning the interfacial properties. In this study, the effects of 405 nm visible-light illumination on the ferroelectric and ferromagnetic responses of (001) Pb(Mg1/3Nb2/3)O-3-0.4PbTiO(3) (PMN-PT)/Ni heterostructures are presented. By combining electrical, structural, magnetic, and spectroscopic measurements, how light illumination above the ferroelectric bandgap energy induces a photovoltaic current and the photostrictive effect reduces the coercive field of the interfacial magnetostrictive Ni layer are shown. Firstly, a light-induced variation in the Ni orbital moment as a result of sum-rule analysis of x-ray magnetic circular dichroic measurements is reported. The reduction of orbital moment reveals a photogenerated strain field. The observed effect is strongly reduced when polarizing out-of-plane the PMN-PT substrate, showing a highly anisotropic photostrictive contribution from the in-plane ferroelectric domains. These results shed light on the delicate energy balance that leads to sizeable light-induced effects in multiferroic heterostructures, while confirming the need of spectroscopy for identifying the physical origin of interface behavior
    • 

    corecore