5,392 research outputs found

    Improving Table Compression with Combinatorial Optimization

    Full text link
    We study the problem of compressing massive tables within the partition-training paradigm introduced by Buchsbaum et al. [SODA'00], in which a table is partitioned by an off-line training procedure into disjoint intervals of columns, each of which is compressed separately by a standard, on-line compressor like gzip. We provide a new theory that unifies previous experimental observations on partitioning and heuristic observations on column permutation, all of which are used to improve compression rates. Based on the theory, we devise the first on-line training algorithms for table compression, which can be applied to individual files, not just continuously operating sources; and also a new, off-line training algorithm, based on a link to the asymmetric traveling salesman problem, which improves on prior work by rearranging columns prior to partitioning. We demonstrate these results experimentally. On various test files, the on-line algorithms provide 35-55% improvement over gzip with negligible slowdown; the off-line reordering provides up to 20% further improvement over partitioning alone. We also show that a variation of the table compression problem is MAX-SNP hard.Comment: 22 pages, 2 figures, 5 tables, 23 references. Extended abstract appears in Proc. 13th ACM-SIAM SODA, pp. 213-222, 200

    Photonic band gaps analysis of Thue-Morse multilayers made of porous silicon

    Get PDF
    Dielectric aperiodic Thue-Morse structures up to 128 layers have been fabricated by using porous silicon technology. The photonic band gap properties of Thue-Morse multilayers have been theoretically investigated by means of the transfer matrix method and the integrated density of states. The theoretical approach has been compared and discussed with the reflectivity measurements at variable angles for both the transverse electric and transverse magnetic polarizations of light. The photonic band gap regions, wide 70 nm and 90 nm, included between 0 and 30°, have been observed for the sixth and seventh orders, respectively

    The effect of temperature anisotropy on observations of Doppler dimming and pumping in the inner corona

    Full text link
    Recent observations of the spectral line profiles and intensity ratio of the O VI 1032 {\AA} and 1037.6 {\AA} doublet by the Ultraviolet Coronagraph Spectrometer (UVCS) on the Solar and Heliospheric Observatory (SOHO), made in coronal holes below 3.5 RsR_s, provide evidence for Doppler dimming of the O VI 1037.6 {\AA} line and pumping by the chromospheric C II 1037.0182 {\AA} line. Evidence for a significant kinetic temperature anisotropy of O5+^{5+} ions was also derived from these observations. We show in this Letter how the component of the kinetic temperature in the direction perpendicular to the magnetic field, for both isotropic and anisotropic temperature distributions, affects both the amount of Doppler dimming and pumping. Taking this component into account, we further show that the observation that the O VI doublet intensity ratio is less than unity can be accounted for only if pumping by C II 1036.3367 {\AA} in addition to C II 1037.0182 {\AA} is in effect. The inclusion of the C II 1036.3367 {\AA} pumping implies that the speed of the O5+^{5+} ions can reach 400 km/s around 3 RsR_s which is significantly higher than the reported UVCS values for atomic hydrogen in polar coronal holes. These results imply that oxygen ions flow much faster than protons at that heliocentric distance.Comment: 9 pages, 3 figure

    General criterion for the entanglement of two indistinguishable particles

    Full text link
    We relate the notion of entanglement for quantum systems composed of two identical constituents to the impossibility of attributing a complete set of properties to both particles. This implies definite constraints on the mathematical form of the state vector associated with the whole system. We then analyze separately the cases of fermion and boson systems, and we show how the consideration of both the Slater-Schmidt number of the fermionic and bosonic analog of the Schmidt decomposition of the global state vector and the von Neumann entropy of the one-particle reduced density operators can supply us with a consistent criterion for detecting entanglement. In particular, the consideration of the von Neumann entropy is particularly useful in deciding whether the correlations of the considered states are simply due to the indistinguishability of the particles involved or are a genuine manifestation of the entanglement. The treatment leads to a full clarification of the subtle aspects of entanglement of two identical constituents which have been a source of embarrassment and of serious misunderstandings in the recent literature.Comment: 18 pages, Latex; revised version: Section 3.2 rewritten, new Theorems added, reference [1] corrected. To appear on Phys.Rev.A 70, (2004

    Threshold Resummed Spectra in B -> Xu l nu Decays in NLO (I)

    Get PDF
    We evaluate thresholds resummed spectra in B -> Xu l nu decays in next-to-leading order. We present results for the distribution in E_X and in m_X^2/E_X^2, for the distribution in E_X and E_l and for the distribution in E_X, where E_X and m_X are the energy and the invariant mass of the final hadronic state Xu respectively and E_l is the energy of the charged lepton. We explicitly show that all these spectra (where there is no integration over the hadronic energy) can be directly related to the photon spectrum in B -> Xs gamma via short-distance coefficient functions.Comment: 33 pages, no figures. The section on the double distribution in the hadron and electron energies has been largely rewritten with an improved resummation scheme. Small stylistic changes in the remaining sections. References adde

    Time-dependent Nonlinear Optical Susceptibility of an Out-of-Equilibrium Soft Material

    Full text link
    We investigate the time-dependent nonlinear optical absorption of a clay dispersion (Laponite) in organic dye (Rhodamine B) water solution displaying liquid-arrested state transition. Specifically, we determine the characteristic time τD\tau_D of the nonlinear susceptibility build-up due as to the Soret effect. By comparing τD\tau_D with the relaxation time provided by standard dynamic light scattering measurements we report on the decoupling of the two collective diffusion times at the two very different length scales during the aging of the out-of-equilibrium system. With this demonstration experiment we also show the potentiality of nonlinear optics measurements in the study of the late stage of arrest in soft materials

    The 2013 Lunigiana (Central Italy) earthquake: Seismic source analysis from DInSar and seismological data, and geodynamic implications for the northern Apennines. A discussion

    Get PDF
    We refine the geological data of the 2013 Lunigiana EQ of Pezzo et al. (2014) We report structural constraints for the seismic source of the 2013 Lunigiana EQ. We underline the role of tectonic inheritance for the seismogenic faul

    Prospects for Stochastic Background Searches Using Virgo and LSC Interferometers

    Full text link
    We consider the question of cross-correlation measurements using Virgo and the LSC Interferometers (LIGO Livingston, LIGO Hanford, and GEO600) to search for a stochastic gravitational-wave background. We find that inclusion of Virgo into the network will substantially improve the sensitivity to correlations above 200 Hz if all detectors are operating at their design sensitivity. This is illustrated using a simulated isotropic stochastic background signal, generated with an astrophysically-motivated spectrum, injected into 24 hours of simulated noise for the LIGO and Virgo interferometers.Comment: 11 pages, uses IOP style files, submitted to CQG for GWDAW11 proceedings; revised in response to referee comment
    • 

    corecore