9 research outputs found
Gene expression and pathway bioinformatics analysis detect a potential predictive value of MAP3K8 in thyroid cancer progression
Thyroid cancer is the commonest endocrine malignancy. Mutation in the BRAF
serine/threonine kinase is the most frequent genetic alteration in thyroid
cancer. Target therapy for advanced and poorly differentiated thyroid
carcinomas include BRAF pathway inhibitors. Here, we evaluated the role of
MAP3K8 expression as a potential driver of resistance to BRAF inhibition in
thyroid cancer. By analyzing Gene Expression Omnibus data repository, across
all thyroid cancer histotypes, we found that MAP3K8 is up-regulated in poorly
differentiated thyroid carcinomas and its expression is related to a stem cell
like phenotype and a poorer prognosis and survival. Taken together these data
unravel a novel mechanism for thyroid cancer progression and chemo-resistance
and confirm previous results obtained in cultured thyroid cancer stem cellsComment: 5 page
The Inorganic Side of NGF: Copper(II) And Zinc(II) Affect the NGF Mimicking Signalling of the N-Terminus Peptides Encompassing the Recognition Domain of TrkA Receptor
The nerve growth factor (NGF) N-terminus peptide, NGF(1-14), and its acetylated form, Ac-NGF(1-14), were investigated to scrutinise the ability of this neurotrophin domain to mimic the whole protein.
Theoretical calculations demonstrated that non-covalent forces assist the molecular recognition of TrkA receptor for both peptides. Combined parallel tempering/docking simulations discriminated the effect of the N-terminal acetylation on the recognition of NGF(1-14) towards the domain 5 of TrkA (TrkA-D5). Experimental findings demonstrated that both NGF(1-14) and Ac-NGF(1-14) activate TrkA signaling pathways essential for neuronal survival. The NGF-induced TrkA internalization was slightly inhibited in the presence of Cu2+ and Zn2+ ions, whereas the metal ions elicited the NGF(1-14)-induced internalization of TrkA and no significant differences were found in the weak Ac-NGF(1-14)-induced receptor internalization. The crucial role of the metals was confirmed by experiments with the metal-chelator bathocuproine disulfonic acid, which discriminated different levels of inhibitory effects in the signalling cascade, due to different metal affinity of NGF, the free amino and the acetylated peptides.
The NGF signaling cascade, activated by NGF (1−14) and Ac-NGF(1-14), induced CREB phosphorylation, but the copper addition further stimulated the Akt, ERK and CREB phosphorylation only for NGF and NGF(1-14). A dynamic and quick influx of both peptides into PC12 cells was tracked by live cell imaging with confocal microscopy. A significant role of copper ions was found in the modulation of peptide sub-cellular localization, especially at the nuclear level. Furthermore, a strong copper ionophoric ability of NGF(1-14) was measured. The Ac-NGF(1-14) peptide, which binds copper ions with a lower stability constant than NGF(1-14), exhibited a lower nuclear localization with respect to the total cellular uptake. These findings were correlated to the metal-induced increase of CREB and BDNF expression upon NGF(1-14) stimulation.
In summary, we here validate NGF(1-14) and Ac-NGF(1-14) as first examples of monomer and linear peptides able to activate the NGF-TrkA signaling cascade. Metal ions modulate the activity of both NGF protein and the NGF-mimicking peptides. Such findings demonstrate that NGF(1-14) sequence can reproduce the signal transduction of whole protein, therefore represent a very promising drug candidate for further preclinical studies
Heavy Metals in the Environment and Thyroid Cancer
In recent decades, the incidence of thyroid cancer has increased more than most other cancers, paralleling the generalized worldwide increase in metal pollution. This review provides an overview of the evidence supporting a possible causative link between the increase in heavy metals in the environment and thyroid cancer. The major novelty is that human thyroid stem/progenitor cells (thyrospheres) chronically exposed to different metals at slightly increased environmentally relevant concentrations show a biphasic increase in proliferation typical of hormesis. The molecular mechanisms include, for all metals investigated, the activation of the extracellular signal-regulated kinase (ERK1/2) pathway. A metal mixture, at the same concentration of individual metals, was more effective. Under the same conditions, mature thyrocytes were unaffected. Preliminary data with tungsten indicate that, after chronic exposure, additional abnormalities may occur and persist in thyrocytes derived from exposed thyrospheres, leading to a progeny population of transformation-prone thyroid cells. In a rat model predisposed to develop thyroid cancer, long-term exposure to low levels of metals accelerated and worsened histological signs of malignancy in the thyroid. These studies provide new insight on metal toxicity and carcinogenicity occurring in thyroid cells at a low stage of differentiation when chronically exposed to metal concentrations that are slightly increased, albeit still in the “normal” range
Increased Thyroid Cancer Incidence in Volcanic Areas: A Role of Increased Heavy Metals in the Environment?
Thyroid cancer incidence is significantly increased in volcanic areas, where relevant non-anthropogenic pollution with heavy metals is present in the environment. This review will discuss whether chronic lifelong exposure to slightly increased levels of metals can contribute to the increase in thyroid cancer in the residents of a volcanic area. The influence of metals on living cells depends on the physicochemical properties of the metals and their interaction with the target cell metallostasis network, which includes transporters, intracellular binding proteins, and metal-responsive elements. Very little is known about the carcinogenic potential of slightly increased metal levels on the thyroid, which might be more sensitive to mutagenic damage because of its unique biology related to iodine, which is a very reactive and strongly oxidizing agent. Different mechanisms could explain the specific carcinogenic effect of borderline/high environmental levels of metals on the thyroid, including (a) hormesis, the nonlinear response to chemicals causing important biological effects at low concentrations; (b) metal accumulation in the thyroid relative to other tissues; and (c) the specific effects of a mixture of different metals. Recent evidence related to all of these mechanisms is now available, and the data are compatible with a cause–effect relationship between increased metal levels in the environment and an increase in thyroid cancer incidence
Neurotrophin-mimicking peptides at the biointerface with gold respond to copper ion stimuli
The peptide fragments NGF1–14 and BDNF1–12, encompassing the N-terminal domains, respectively, of the proteins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were used in this study for the fabrication of a hybrid gold/peptide biointerface. These peptides mimic the Trk receptor activation of the respective whole protein – with a crucial role played by copper ions – and exhibit, in bulk solution, a pH-dependent capability to complex copper. We demonstrate here the maintenance of peptide-specific responses at different pH values as well as the copper binding also for the adlayers formed upon physisorption at the gold surface. The physicochemical properties, including viscoelastic behavior of the adlayer and competitive vs. synergic interactions in sequential adsorption processes, were addressed both experimentally, by quartz crystal microbalance with dissipation monitoring (QCM-D) and circular dichroism (CD), and theoretically, by molecular dynamics (MD) calculations. Proof-of work biological assays with the neuroblastoma SY-SH5H cell line demonstrated that the developed hybrid Au/peptide nanoplatforms are very promising for implementation in pH- and metal-responsive systems for application in nanomedicine
The Copper(II)-Assisted Connection between NGF and BDNF by Means of Nerve Growth Factor-Mimicking Short Peptides
Nerve growth factor (NGF) is a protein necessary for development and maintenance of the sympathetic and sensory nervous systems. We have previously shown that the NGF N-terminus peptide NGF(1-14) is sufficient to activate TrkA signaling pathways essential for neuronal survival and to induce an increase in brain-derived neurotrophic factor (BDNF) expression. Cu2+ ions played a critical role in the modulation of the biological activity of NGF(1-14). Using computational, spectroscopic, and biochemical techniques, here we report on the ability of a newly synthesized peptide named d-NGF(1-15), which is the dimeric form of NGF(1-14), to interact with TrkA. We found that d-NGF(1-15) interacts with the TrkA-D5 domain and induces the activation of its signaling pathways. Copper binding to d-NGF(1-15) stabilizes the secondary structure of the peptides, suggesting a strengthening of the noncovalent interactions that allow for the molecular recognition of D5 domain of TrkA and the activation of the signaling pathways. Intriguingly, the signaling cascade induced by the NGF peptides ultimately involves cAMP response element-binding protein (CREB) activation and an increase in BDNF protein level, in keeping with our previous result showing an increase of BDNF mRNA. All these promising connections can pave the way for developing interesting novel drugs for neurodegenerative diseases