537 research outputs found

    Misuse and Artifact in Factor Analytic Research

    Get PDF
    The theory of factor analysis has been developed for incorporating mathematical statistical theories such as the maximum likelihood method and asymptotic methods. However, there have been several instances of misuse while employing procedures for factor analysis studies. In several studies, factor analysis has been performed by deleting items exhibiting the ceiling effect or floor effect. The number of samples required for factor analysis is not well known. Kaiser-Guttman criterion cannot be applied for determining the number of factors. Furthermore, various studies have employed Scree Graphs and Parallel Analysis for the said purpose, but no definitive method exists for the same. Orthogonal rotation methods such as Varimax cannot be considered as a conclusive solution. However, Geomin has been considered as a better rotation method not only for simple structure but also for more complex factor configuration. Simple structure and bifactor structure are discussed in connection to factor rotation problem. Although there are various artifacts associated with the usage of factor analysis, this issue can be addressed by verifying factorial invariance through multi-group simultaneous analysis incorporated by SEM programs such as Mplus and R Package.因子分析の理論は、最尤法と漸近的方法のような数理統計学的理論を組み込んだ形で発展してきた。しかしながら、因子分析研究の手順にはまだ誤用がみられる。いくつかの研究において、天井効果や床効果を示す項目を削除して因子分析が行われている。因子分析に必要なサンプル数は明確ではない。因子の数を決定するためにKaiser-Guttman 基準は使うことはできない。そして、この目的でScree Graph とParallel Analysis を使用している研究は数多くあるが、そのための決定的な方法はない。Varimax のような直交回転は最終的な解と考えることはできない。しかしながら、Geomin は単純構造だけでなくより複雑な因子の布置に対しても優れた回転方法と考えられている。因子回転問題を考慮した単純構造とbifactor 構造について議論した。因子分析の使い方には多くのartifacts があるが、この問題は、Mplus やR Package などのSEMプログラムによって組み込まれた複数集団の同時分析によって因子的不変性を検証することによって対処することができる

    Tuning Carbon Dioxide Adsorption Affinity of Zinc(II) MOFs by Mixing Bis(pyrazolate) Ligands with N-Containing Tags

    Get PDF
    The four zinc(II) mixed-ligand metal-organic frameworks (MIXMOFs) Zn(BPZ)x(BPZNO2)1-x, Zn(BPZ)x(BPZNH2)1-x, Zn(BPZNO2)x(BPZNH2)1-x, and Zn(BPZ)x(BPZNO2)y(BPZNH2)1-x-y (H2BPZ = 4,4′-bipyrazole; H2BPZNO2 = 3-nitro-4,4′-bipyrazole; H2BPZNH2 = 3-amino-4,4′-bipyrazole) were prepared through solvothermal routes and fully investigated in the solid state. Isoreticular to the end members Zn(BPZ) and Zn(BPZX) (X = NO2, NH2), they are the first examples ever reported of (pyr)azolate MIXMOFs. Their crystal structure is characterized by a three-dimensional open framework with one-dimensional square or rhombic channels decorated by the functional groups. Accurate information about ligand stoichiometric ratio was determined (for the first time on MIXMOFs) through integration of selected ligands skeleton resonances from 13C cross polarized magic angle spinning solid-state NMR spectra collected on the as-synthesized materials. Like other poly(pyrazolate) MOFs, the four MIXMOFs are thermally stable, with decomposition temperatures between 708 and 726 K. As disclosed by N2 adsorption at 77 K, they are micro-mesoporous materials with Brunauer-Emmett-Teller specific surface areas in the range 400-600 m2/g. A comparative study (involving also the single-ligand analogues) of CO2 adsorption capacity, CO2 isosteric heat of adsorption (Qst), and CO2/N2 selectivity in equimolar mixtures at p = 1 bar and T = 298 K cast light on interesting trends, depending on ligand tag nature or ligand stoichiometric ratio. In particular, the amino-decorated compounds show higher Qst values and CO2/N2 selectivity vs the nitro-functionalized analogues; in addition, tag "dilution" [upon passing from Zn(BPZX) to Zn(BPZ)x(BPZX)1-x] increases CO2 adsorption selectivity over N2. The simultaneous presence of amino and nitro groups is not beneficial for CO2 uptake. Among the compounds studied, the best compromise among uptake capacity, Qst, and CO2/N2 selectivity is represented by Zn(BPZ)x(BPZNH2)1-x

    Lattice expansion of graphite oxide by pressure induced insertion of liquid ammonia

    Get PDF
    © 2015 Elsevier Ltd. All rights reserved. A pressure induced lattice expansion of Graphite Oxide (GO) in presence of NH3 was observed by X-ray diffraction during room temperature compression and decompression up to 7 GPa in a diamond anvil cell (DAC). A remarkable increase (∼11%) of the interlayer d-spacing of GO was observed between 0.2 and 1.1 GPa in the liquid phase of NH3, indicating the occurrence of molecular insertion between the GO layers. The expansion is reversible with the release of pressure, thus leading to a pressure induced breathing of the GO lattice. The presence of high density NH3 between the GO layers opens new perspectives for N-doping and chemical functionalization of GO and for designing new advanced carbon based nanostructured materials

    High-Pressure Chemistry of Graphene Oxide in the Presence of Ar, N<inf>2</inf>, and NH<inf>3</inf>

    Get PDF
    © 2016 American Chemical Society.The high pressure structural and reactive beahvior of graphene oxide (GO) in the presence of Ar, N2, and NH3 was studied in diamond anvil cells (DAC) by X-ray diffraction (XRD) and vibrational spectroscopy (FTIR and Raman), with the purpose of investigating the use of pressure for N-doping and functionalization of GO in high-density conditions. The pressure evolution of the interlayer d-spacing of GO during room temperature compression and decompression indicates the pressure-induced insertion of the selected systems between the GO layers and the stability of the GO layered structure at high pressure. Thermal and photoinduced reactivity was studied in GO with N2 and in GO with NH3 in different pressure conditions. The comparison of the infrared spectra of the recovered samples at ambient conditions with respect to the starting GO provides evidence for the occurrence of chemical reactivity of N2 and NH3 with GO, leading to N incorporation and GO functionalization, as also confirmed by the Raman spectra. The observed reactivity opens new perspectives for the high-pressure chemistry of GO and carbon-based nanostructured systems

    Cobalt(II) Bipyrazolate Metal-Organic Frameworks as Heterogeneous Catalysts in Cumene Aerobic Oxidation: A Tag-Dependent Selectivity

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c00481"[EN] Three metal-organic frameworks with the general formula Co(BPZX) (BPZX(2-) = 3-X-4,4'-bipyrazolate, X = H, NH2, NO2) constructed with ligands having different functional groups on the same skeleton have been employed as heterogeneous catalysts for aerobic liquid-phase oxidation of cumene with O-2 as oxidant. O-2 adsorption isotherms collected at p(O2) = 1 atm and T = 195 and 273 K have cast light on the relative affinity of these catalysts for dioxygen. The highest gas uptake at 195 K is found for Co(BPZ) (3.2 mmol/g (10.1 wt % O-2)), in line with its highest BET specific surface area (926 m(2)/g) in comparison with those of Co(BPZNH(2)) (317 m(2)/g) and Co(BPZNO(2)) (645 m(2)/g). The O-2 isosteric heat of adsorption (Q(2)) trend follows the order Co(BPZ) > Co(BPZNH(2)) > Co(BPZNO(2)). Interestingly, the selectivity in the cumene oxidation products was found to be dependent on the tag present in the catalyst linker: while cumene hydroperoxide (CHP) is the main product obtained with Co(BPZ) (84% selectivity to CHP after 7 h, p(O2) = 4 bar, and T = 363 K), further oxidation to 2-phenyl-2-propanol (PP) is observed in the presence of Co(BPZNH(2)) as the catalyst (69% selectivity to PP under the same experimental conditions).S.G., R.V., and M.M. acknowledge Universita dell'Insubria for partial funding. G.G. thanks the Italian MIUR through the PRIN 2017 Project Multi-e: Multielectron Transfer for the Conversion of Small Molecules: an Enabling Technology for the Chemical Use of Renewable Energy (20179337R7) for financial support. G.G. thanks the TRAINER project (Catalysts for Transition to Renewable Energy Future) ref. ANR-17-MPGA-0017 for support. C.P. thanks the University of Camerino and the Italian MIUR throughout the PRIN 2015 Project Towards a Sustainable Chemistry (20154 x 9ATP_002). This project has also received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 641887 (project acronym: DEFNET) and the Spanish Government through projects MAT2017-82288-C2-1-P and Severo Ochoa (SEV-2016-0683). Professor Norberto Masciocchi (University of Insubria, Como, Italy) is acknowledged for fruitful discussions. The authors are also grateful to Dr. Giulia Tuci (CNR-ICCOM Florence, Italy) for help with the XPS curve fitting. The Microscopy Service of the Universitat Politècnica de València is gratefully acknowledged for the electron microscopy measurements.Nowacka, AE.; Vismara, R.; Mercuri, G.; Moroni, M.; Palomino Roca, M.; Domasevitch, K.; Di Nicola, C.... (2020). Cobalt(II) Bipyrazolate Metal-Organic Frameworks as Heterogeneous Catalysts in Cumene Aerobic Oxidation: A Tag-Dependent Selectivity. Inorganic Chemistry. 59(12):8161-8172. https://doi.org/10.1021/acs.inorgchem.0c00481S816181725912Fortuin, J. P., & Waterman, H. I. (1953). Production of phenol from cumene. Chemical Engineering Science, 2(4), 182-192. doi:10.1016/0009-2509(53)80040-0Luyben, W. L. (2009). Design and Control of the Cumene Process. Industrial & Engineering Chemistry Research, 49(2), 719-734. doi:10.1021/ie9011535Matsui, S., & Fujita, T. (2001). New cumene-oxidation systems. Catalysis Today, 71(1-2), 145-152. doi:10.1016/s0920-5861(01)00450-3Opeida, I. A., Kytsya, A. R., Bazylyak, L. I., & Pobigun, O. I. (2017). Silver Nanoparticle Catalysis of the Liquid-Phase Radical Chain Oxidation of Cumene by Molecular Oxygen. Theoretical and Experimental Chemistry, 52(6), 369-374. doi:10.1007/s11237-017-9492-zTsodikov, M. V., Kugel, V. Y., Slivinskii, E. V., Bondarenko, G. N., Maksimov, Y. V., Alvarez, M. A., … Navio, J. A. (2000). Selectivity and mechanism of cumene liquid-phase oxidation in the presence of powdered mixed iron–aluminum oxides prepared by alkoxy method. Applied Catalysis A: General, 193(1-2), 237-242. doi:10.1016/s0926-860x(99)00438-xZhang, M., Wang, L., Ji, H., Wu, B., & Zeng, X. (2007). Cumene Liquid Oxidation to Cumene Hydroperoxide over CuO Nanoparticle with Molecular Oxygen under Mild Condition. Journal of Natural Gas Chemistry, 16(4), 393-398. doi:10.1016/s1003-9953(08)60010-9Hsu, Y. F., & Cheng, C. P. (1998). Mechanistic investigation of the autooxidation of cumene catalyzed by transition metal salts supported on polymer. Journal of Molecular Catalysis A: Chemical, 136(1), 1-11. doi:10.1016/s1381-1169(98)00016-8Hsu, Y. F., & Cheng, C. P. (1997). Polymer supported catalyst for the effective autoxidation of cumene to cumene hydroperoxide. Journal of Molecular Catalysis A: Chemical, 120(1-3), 109-116. doi:10.1016/s1381-1169(96)00442-6Ying Fang, H., Mei Huei, Y., & Cheu Pyeng, C. (1996). Autooxidation of cumene catalyzed by transition metal compounds on polymeric supports. Journal of Molecular Catalysis A: Chemical, 105(3), 137-144. doi:10.1016/1381-1169(95)00205-7Narulkar, D. D., Srivastava, A. K., Butcher, R. J., Ansy, K. M., & Dhuri, S. N. (2017). Synthesis and characterization of N3Py2 ligand-based cobalt(II), nickel(II) and copper(II) catalysts for efficient conversion of hydrocarbons to alcohols. Inorganica Chimica Acta, 467, 405-414. doi:10.1016/j.ica.2017.08.027Wang, R.-M., Duan, Z.-F., He, Y.-F., & Lei, Z.-Q. (2006). Heterogeneous catalytic aerobic oxidation behavior of Co–Na heterodinuclear polymeric complex of Salen-crown ether. Journal of Molecular Catalysis A: Chemical, 260(1-2), 280-287. doi:10.1016/j.molcata.2006.07.049Rogovin, M., & Neumann, R. (1999). Silicate xerogels containing cobalt as heterogeneous catalysts for the side-chain oxidation of alkyl aromatic compounds with tert-butyl hydroperoxide. Journal of Molecular Catalysis A: Chemical, 138(2-3), 315-318. doi:10.1016/s1381-1169(98)00207-6Konopińska, A. (2017). &lt;i&gt;N&lt;/i&gt;-Hydroxyphthalimide as a Catalyst of Cumene Oxidation with Hydroperoxide. Modern Chemistry, 5(2), 29. doi:10.11648/j.mc.20170502.12VARMA, G. (1973). Heterogeneous catalytic oxidation of cumene (isopropyl benzene) in liquid phase. Journal of Catalysis, 28(2), 236-244. doi:10.1016/0021-9517(73)90006-7Collom, S. L., Bloomfield, A. J., & Anastas, P. T. (2016). Advancing Sustainable Manufacturing through a Heterogeneous Cobalt Catalyst for Selective C–H Oxidation. Industrial & Engineering Chemistry Research, 55(12), 3308-3312. doi:10.1021/acs.iecr.5b03674Scognamiglio, J., Jones, L., Letizia, C. S., & Api, A. M. (2012). Fragrance material review on 2-phenyl-2-propanol. Food and Chemical Toxicology, 50, S130-S133. doi:10.1016/j.fct.2011.10.011Rossin, A., Tuci, G., Luconi, L., & Giambastiani, G. (2017). Metal–Organic Frameworks as Heterogeneous Catalysts in Hydrogen Production from Lightweight Inorganic Hydrides. ACS Catalysis, 7(8), 5035-5045. doi:10.1021/acscatal.7b01495Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395kLiu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094cGascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959kLuo, S., Zeng, Z., Zeng, G., Liu, Z., Xiao, R., Chen, M., … Jiang, D. (2019). Metal Organic Frameworks as Robust Host of Palladium Nanoparticles in Heterogeneous Catalysis: Synthesis, Application, and Prospect. ACS Applied Materials & Interfaces, 11(36), 32579-32598. doi:10.1021/acsami.9b11990Deng, X., Li, Z., & García, H. (2017). Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs). Chemistry - A European Journal, 23(47), 11189-11209. doi:10.1002/chem.201701460Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141Song, X., Hu, D., Yang, X., Zhang, H., Zhang, W., Li, J., … Yu, J. (2019). Polyoxomolybdic Cobalt Encapsulated within Zr-Based Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for Olefins Epoxidation. ACS Sustainable Chemistry & Engineering, 7(3), 3624-3631. doi:10.1021/acssuschemeng.8b06736Zhang, T., Hu, Y.-Q., Han, T., Zhai, Y.-Q., & Zheng, Y.-Z. (2018). Redox-Active Cobalt(II/III) Metal–Organic Framework for Selective Oxidation of Cyclohexene. ACS Applied Materials & Interfaces, 10(18), 15786-15792. doi:10.1021/acsami.7b19323Ma, Y., Peng, H., Liu, J., Wang, Y., Hao, X., Feng, X., … Li, Y. (2018). Polyoxometalate-Based Metal–Organic Frameworks for Selective Oxidation of Aryl Alkenes to Aldehydes. Inorganic Chemistry, 57(7), 4109-4116. doi:10.1021/acs.inorgchem.8b00282Othong, J., Boonmak, J., Ha, J., Leelasubcharoen, S., & Youngme, S. (2017). Thermally Induced Single-Crystal-to-Single-Crystal Transformation and Heterogeneous Catalysts for Epoxidation Reaction of Co(II) Based Metal–Organic Frameworks Containing 1,4-Phenylenediacetic Acid. Crystal Growth & Design, 17(4), 1824-1835. doi:10.1021/acs.cgd.6b01788Wang, J.-C., Ding, F.-W., Ma, J.-P., Liu, Q.-K., Cheng, J.-Y., & Dong, Y.-B. (2015). Co(II)-MOF: A Highly Efficient Organic Oxidation Catalyst with Open Metal Sites. Inorganic Chemistry, 54(22), 10865-10872. doi:10.1021/acs.inorgchem.5b01938Tuci, G., Giambastiani, G., Kwon, S., Stair, P. C., Snurr, R. Q., & Rossin, A. (2014). Chiral Co(II) Metal–Organic Framework in the Heterogeneous Catalytic Oxidation of Alkenes under Aerobic and Anaerobic Conditions. ACS Catalysis, 4(3), 1032-1039. doi:10.1021/cs401003dHamidipour, L., & Farzaneh, F. (2013). Cobalt metal organic framework as an efficient heterogeneous catalyst for the oxidation of alkanes and alkenes. Reaction Kinetics, Mechanisms and Catalysis, 109(1), 67-75. doi:10.1007/s11144-012-0533-2Luz, I., León, A., Boronat, M., Llabrés i Xamena, F. X., & Corma, A. (2013). Selective aerobic oxidation of activated alkanes with MOFs and their use for epoxidation of olefins with oxygen in a tandem reaction. Catal. Sci. Technol., 3(2), 371-379. doi:10.1039/c2cy20449eSantiago-Portillo, A., Navalón, S., Cirujano, F. G., Xamena, F. X. L. i, Alvaro, M., & Garcia, H. (2015). MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 5(6), 3216-3224. doi:10.1021/acscatal.5b00411Nowacka, A., Briantais, P., Prestipino, C., & Llabrés i Xamena, F. X. (2019). Selective Aerobic Oxidation of Cumene to Cumene Hydroperoxide over Mono- and Bimetallic Trimesate Metal–Organic Frameworks Prepared by a Facile «Green» Aqueous Synthesis. ACS Sustainable Chemistry & Engineering, 7(8), 7708-7715. doi:10.1021/acssuschemeng.8b06472Vismara, R., Tuci, G., Tombesi, A., Domasevitch, K. V., Di Nicola, C., Giambastiani, G., … Galli, S. (2019). Tuning Carbon Dioxide Adsorption Affinity of Zinc(II) MOFs by Mixing Bis(pyrazolate) Ligands with N-Containing Tags. ACS Applied Materials & Interfaces, 11(30), 26956-26969. doi:10.1021/acsami.9b08015Vismara, R., Tuci, G., Mosca, N., Domasevitch, K. V., Di Nicola, C., Pettinari, C., … Rossin, A. (2019). Amino-decorated bis(pyrazolate) metal–organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorganic Chemistry Frontiers, 6(2), 533-545. doi:10.1039/c8qi00997jMosca, N., Vismara, R., Fernandes, J. A., Tuci, G., Di Nicola, C., Domasevitch, K. V., … Galli, S. (2018). Nitro-Functionalized Bis(pyrazolate) Metal-Organic Frameworks as Carbon Dioxide Capture Materials under Ambient Conditions. Chemistry - A European Journal, 24(50), 13170-13180. doi:10.1002/chem.201802240Pettinari, C., Tăbăcaru, A., & Galli, S. (2016). Coordination polymers and metal–organic frameworks based on poly(pyrazole)-containing ligands. Coordination Chemistry Reviews, 307, 1-31. doi:10.1016/j.ccr.2015.08.005Pettinari, C., Tăbăcaru, A., Boldog, I., Domasevitch, K. V., Galli, S., & Masciocchi, N. (2012). Novel Coordination Frameworks Incorporating the 4,4′-Bipyrazolyl Ditopic Ligand. Inorganic Chemistry, 51(9), 5235-5245. doi:10.1021/ic3001416Colombo, V., Montoro, C., Maspero, A., Palmisano, G., Masciocchi, N., Galli, S., … Navarro, J. A. R. (2012). Tuning the Adsorption Properties of Isoreticular Pyrazolate-Based Metal–Organic Frameworks through Ligand Modification. Journal of the American Chemical Society, 134(30), 12830-12843. doi:10.1021/ja305267mTăbăcaru, A., Pettinari, C., Masciocchi, N., Galli, S., Marchetti, F., & Angjellari, M. (2011). Pro-porous Coordination Polymers of the 1,4-Bis((3,5-dimethyl-1H-pyrazol-4-yl)-methyl)benzene Ligand with Late Transition Metals. Inorganic Chemistry, 50(22), 11506-11513. doi:10.1021/ic2013705Colombo, V., Galli, S., Choi, H. J., Han, G. D., Maspero, A., Palmisano, G., … Long, J. R. (2011). High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chemical Science, 2(7), 1311. doi:10.1039/c1sc00136aMasciocchi, N., Galli, S., Colombo, V., Maspero, A., Palmisano, G., Seyyedi, B., … Bordiga, S. (2010). Cubic Octanuclear Ni(II) Clusters in Highly Porous Polypyrazolyl-Based Materials. Journal of the American Chemical Society, 132(23), 7902-7904. doi:10.1021/ja102862jGalli, S., Masciocchi, N., Colombo, V., Maspero, A., Palmisano, G., López-Garzón, F. J., … Navarro, J. A. R. (2010). Adsorption of Harmful Organic Vapors by Flexible Hydrophobic Bis-pyrazolate Based MOFs. Chemistry of Materials, 22(5), 1664-1672. doi:10.1021/cm902899tBoldog, I., Sieler, J., Chernega, A. N., & Domasevitch, K. V. (2002). 4,4′-Bipyrazolyl: new bitopic connector for construction of coordination networks. Inorganica Chimica Acta, 338, 69-77. doi:10.1016/s0020-1693(02)00902-7Domasevitch, K. V., Gospodinov, I., Krautscheid, H., Klapötke, T. M., & Stierstorfer, J. (2019). Facile and selective polynitrations at the 4-pyrazolyl dual backbone: straightforward access to a series of high-density energetic materials. New Journal of Chemistry, 43(3), 1305-1312. doi:10.1039/c8nj05266bTOPAS-Academic 6; Bruker, by Coelho Software: Brisbane, Australia, 2016.Coelho, A. A. (2003). Indexing of powder diffraction patterns by iterative use of singular value decomposition. Journal of Applied Crystallography, 36(1), 86-95. doi:10.1107/s0021889802019878Cheetham, A. K., Bennett, T. D., Coudert, F.-X., & Goodwin, A. L. (2016). Defects and disorder in metal organic frameworks. Dalton Transactions, 45(10), 4113-4126. doi:10.1039/c5dt04392aCliffe, M. J., Wan, W., Zou, X., Chater, P. A., Kleppe, A. K., Tucker, M. G., … Goodwin, A. L. (2014). Correlated defect nanoregions in a metal–organic framework. Nature Communications, 5(1). doi:10.1038/ncomms5176Spirkl, S., Grzywa, M., & Volkmer, D. (2018). Synthesis and characterization of a flexible metal organic framework generated from MnIII and the 4,4′-bipyrazolate-ligand. Dalton Transactions, 47(26), 8779-8786. doi:10.1039/c8dt01185kNazarenko, O. M., Rusanov, E. B., Chernega, A. N., & Domasevitch, K. V. (2013). Cobalt(II) and cadmium(II) square grids supported with 4,4′-bipyrazole and accommodating 3-carboxyadamantane-1-carboxylate. Acta Crystallographica Section C Crystal Structure Communications, 69(3), 232-236. doi:10.1107/s0108270113003405Tăbăcaru, A., Pettinari, C., Marchetti, F., di Nicola, C., Domasevitch, K. V., Galli, S., … Cocchioni, M. (2012). Antibacterial Action of 4,4′-Bipyrazolyl-Based Silver(I) Coordination Polymers Embedded in PE Disks. Inorganic Chemistry, 51(18), 9775-9788. doi:10.1021/ic3011635Sun, Q.-F., Wong, K. M.-C., Liu, L.-X., Huang, H.-P., Yu, S.-Y., Yam, V. W.-W., … Yu, K.-C. (2008). Self-Assembly, Structures, and Photophysical Properties of 4,4′-Bipyrazolate-Linked Metallo-Macrocycles with Dimetal Clips. Inorganic Chemistry, 47(6), 2142-2154. doi:10.1021/ic701344pLozan, V., Solntsev, P. Y., Leibeling, G., Domasevitch, K. V., & Kersting, B. (2007). Tetranuclear Nickel Complexes Composed of Pairs of Dinuclear LNi2 Fragments Linked by 4,4′-Bipyrazolyl, 1,4-Bis(4′-pyrazolyl)benzene, and 4,4′-Bipyridazine: Synthesis, Structures, and Magnetic Properties. European Journal of Inorganic Chemistry, 2007(20), 3217-3226. doi:10.1002/ejic.200700317Bond distances and angles for the rigid body describing the ligand: C–C and C-N of the pyrazole ring 1.36 Å; exocyclic C–C 1.40 Å; C–H of the pyrazole ring 0.95 Å; C–NNH2 1.40 Å; N–H 0.95 Å; pyrazole ring internal and external bond angles 108 and 126°, respectively; angles at the nitrogen atom of the amino group 120°.Coelho, A. A. (2000). Whole-profile structure solution from powder diffraction data using simulated annealing. Journal of Applied Crystallography, 33(3), 899-908. doi:10.1107/s002188980000248xCheary, R. W., & Coelho, A. (1992). A fundamental parameters approach to X-ray line-profile fitting. Journal of Applied Crystallography, 25(2), 109-121. doi:10.1107/s0021889891010804Stephens, P. W. (1999). Phenomenological model of anisotropic peak broadening in powder diffraction. Journal of Applied Crystallography, 32(2), 281-289. doi:10.1107/s0021889898006001Rouquerol, J., Llewellyn, P., & Rouquerol, F. (2007). Is the bet equation applicable to microporous adsorbents? Characterization of Porous Solids VII - Proceedings of the 7th International Symposium on the Characterization of Porous Solids (COPS-VII), Aix-en-Provence, France, 26-28 May 2005, 49-56. doi:10.1016/s0167-2991(07)80008-5Saeidi, N., & Parvini, M. (2015). Accuracy of Dubinin-Astakov and Dubinin-Raduchkevic Adsorption Isotherm Models in Evaluating Micropore Volume of Bontonite. Periodica Polytechnica Chemical Engineering. doi:10.3311/ppch.8374Zhu, X., Tian, C., Veith, G. M., Abney, C. W., Dehaudt, J., & Dai, S. (2016). In Situ Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO2 Capture Performance. Journal of the American Chemical Society, 138(36), 11497-11500. doi:10.1021/jacs.6b07644Zhu, X., Mahurin, S. M., An, S.-H., Do-Thanh, C.-L., Tian, C., Li, Y., … Dai, S. (2014). Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups. Chemical Communications, 50(59), 7933. doi:10.1039/c4cc01588fSpek, A. L. (2009). Structure validation in chemical crystallography. Acta Crystallographica Section D Biological Crystallography, 65(2), 148-155. doi:10.1107/s090744490804362xBlatov, V. A., Shevchenko, A. P., & Proserpio, D. M. (2014). Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Crystal Growth & Design, 14(7), 3576-3586. doi:10.1021/cg500498kTonigold, M., Lu, Y., Mavrandonakis, A., Puls, A., Staudt, R., Möllmer, J., … Volkmer, D. (2011). Pyrazolate-Based Cobalt(II)-Containing Metal-Organic Frameworks in Heterogeneous Catalytic Oxidation Reactions: Elucidating the Role of Entatic States for Biomimetic Oxidation Processes. Chemistry - A European Journal, 17(31), 8671-8695. doi:10.1002/chem.201003173Ma, S., & Zhou, H.-C. (2006). A Metal−Organic Framework with Entatic Metal Centers Exhibiting High Gas Adsorption Affinity. Journal of the American Chemical Society, 128(36), 11734-11735. doi:10.1021/ja063538zWang, Z.-J., Lv, J.-J., Yi, R.-N., Xiao, M., Feng, J.-J., Liang, Z.-W., … Xu, X. (2018). Nondirecting Group sp 3 C−H Activation for Synthesis of Bibenzyls via Homo-coupling as Catalyzed by Reduced Graphene Oxide Supported PtPd@Pt Porous Nanospheres. Advanced Synthesis & Catalysis, 360(5), 932-941. doi:10.1002/adsc.201701389CASEMIER, J. (1973). The oxidation of cumene and the decomposition of cumene hydroperoxide on silver, copper, and platinum. Journal of Catalysis, 29(3), 367-373. doi:10.1016/0021-9517(73)90242-xLiao, S., Chi, Y., Yu, H., Wang, H., & Peng, F. (2014). Tuning the Selectivity in the Aerobic Oxidation of Cumene Catalyzed by Nitrogen-Doped Carbon Nanotubes. ChemCatChem, 6(2), 555-560. doi:10.1002/cctc.201300909Silvestre-Albero, J. (2001). Characterization of microporous solids by immersion calorimetry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187-188(1-3), 151-165. doi:10.1016/s0927-7757(01)00620-3Everett, D. H. (1972). Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure and Applied Chemistry, 31(4), 577-638. doi:10.1351/pac197231040577Liu, C., Wang, T., Ji, J., Wang, C., Wang, H., Jin, P., … Jiang, J. (2019). The effect of pore size and layer number of metal–porphyrin coordination nanosheets on sensing DNA. Journal of Materials Chemistry C, 7(33), 10240-10246. doi:10.1039/c9tc02778eGong, T., Yang, X., Fang, J.-J., Sui, Q., Xi, F.-G., & Gao, E.-Q. (2017). Distinct Chromic and Magnetic Properties of Metal–Organic Frameworks with a Redox Ligand. ACS Applied Materials & Interfaces, 9(6), 5503-5512. doi:10.1021/acsami.6b15540Yamada, Y., Kim, J., Matsuo, S., & Sato, S. (2014). Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon, 70, 59-74. doi:10.1016/j.carbon.2013.12.061Singhbabu, Y. N., Kumari, P., Parida, S., & Sahu, R. K. (2014). Conversion of pyrazoline to pyrazole in hydrazine treated N-substituted reduced graphene oxide films obtained by ion bombardment and their electrical properties. Carbon, 74, 32-43. doi:10.1016/j.carbon.2014.02.079Dementjev, A. ., de Graaf, A., van de Sanden, M. C. ., Maslakov, K. ., Naumkin, A. ., & Serov, A. . (2000). X-Ray photoelectr

    Unraveling Surface Basicity and Bulk Morphology Relationship on Covalent Triazine Frameworks with Unique Catalytic and Gas Adsorption Properties

    Get PDF
    © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimActivity and selectivity are key features at the basis of an efficient catalytic system for promoting the steam- and oxygen-free dehydrogenation (DDH) of ethylbenzene to styrene. The catalyst stability under severe reaction conditions, the reduction of leaching of its active sites, and their resistance to deactivation phenomena on stream are other fundamental aspects to keep in mind while synthesizing new catalytic materials for the process. Although the recent use of single-phase (doped or undoped) carbon nanomaterials has significantly contributed to improving this catalysis, the relationship between materials morphology and their chemical surface properties still remains to be addressed. Here, a class of highly microporous, N-doped covalent triazine frameworks (CTFs) with superior activity and stability in the DDH compared to the benchmark systems of the state-of-the-art is reported. Notably, a comparative analysis of their chemico-physical properties has unveiled the role of the “chemically accessible” surface basicity on the catalyst passivation on stream. Finally, the unique properties of the synthesized CTFs are demonstrated by their excellent H2 storage capability and CO2 absorption that rank among the highest reported so far for related systems

    Pyrazole-Based PCN Pincer Complexes of Palladium(II): Mono- and Dinuclear Hydroxide Complexes and Ligand Rollover C-H Activation

    Get PDF
    © 2015 American Chemical Society. Palladium complexes of the novel unsymmetrical phosphine pyrazole-containing pincer ligands PCNH (PCNH = 1-[3-[(di-tert-butylphosphino)methyl]phenyl]-1H-pyrazole) and PCNMe (PCNMe = 1-[3-[(di-tert-butylphosphino)methyl]phenyl]-5-methyl-1H-pyrazole) have been prepared and characterized through single-crystal X-ray diffraction and multinuclear 1H, 13C{1H}, and 31P{1H} NMR spectroscopy. In preparations of the monomeric hydroxide species (PCNH)Pd(OH), an unexpected N detachment followed by C-H activation on the heterocycle 5-position took place resulting in conversion of the monoanionic {P,C-,N} framework into a dianionic {P,C-,C-} ligand set. The dinuclear hydroxide-bridged species (PCNH)Pd(μ-OH)Pd(PCC) was the final product obtained under ambient conditions. The "rollover" activation was followed via 31P{1H} NMR spectroscopy, and dinuclear cationic μ-OH and monomeric PdII hydroxide intermediates were identified. DFT computational analysis of the process (M06//6-31G∗, THF) showed that the energy barriers for the pyrazolyl rollover and for C-H activation through a σ-bond metathesis reaction are low enough to be overcome under ambient-temperature conditions, in line with the experimental findings. In contrast to the PCNH system, no "rollover" reactivity was observed in the PCNMe system, and the terminal hydroxide complex (PCNMe)Pd(OH) could be readily isolated and fully characterized. (Chemical Equation Presented)

    Ideas and perspectives : Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes – challenges and opportunities from an interdisciplinary perspective

    Get PDF
    The authors thank Marialaura Bancheri, Michele Bottazzi, Roman Cibulka, Massimo Esposito, Alba Gallo, Cesar D. Jimenez-Rodriguez, Angelika Kuebert, Ruth Magh, Stefania Mambelli, Alessia Nannoni, Paolo Nasta, Vladimir Rosko, Andrea Rücker, Noelia Saavedra Berlanga, Martin Šanda, and Anna Scaini for their contributions during the discussion at the workshop “Isotope-based studies of water partitioning and plant–soil interactions in forested and agricultural environments”. The authors also thank “Villa Montepaldi” and the University of Florence for the access to the workshop location, and the municipality of San Casciano in Val di Pesa for logistical support. The authors thank the Department of Innovation, Research and University of the Autonomous Province of Bozen/Bolzano for covering the Open Access publication costs. Last, but not least, the authors wish to thank Matthias Sprenger, Stephen Good, and J. Renée Brooks, as well as the Editor David R. Bowling, whose constructive reviews greatly improved this manuscript.Peer reviewedPublisher PD

    Nitro-functionalized Bis(pyrazolate) Metal–Organic Frameworks as Carbon Dioxide Capture Materials under Ambient Conditions

    Get PDF
    © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim The metal–organic frameworks (MOFs) M(BPZNO2) (M=Co, Cu, Zn; H2BPZNO2=3-nitro-4,4′-bipyrazole) were prepared through solvothermal routes and were fully investigated in the solid state. They showed good thermal stability both under a N2 atmosphere and in air, with decomposition temperatures peaking up to 663 K for Zn(BPZNO2). Their crystal structure is characterized by 3D networks with square (M=Co, Zn) or rhombic (M=Cu) channels decorated by polar NO2 groups. As revealed by N2 adsorption at 77 K, they are micro-mesoporous materials with BET specific surface areas ranging from 400 to 900 m2 g−1. Remarkably, under the mild conditions of 298 K and 1.2 bar, Zn(BPZNO2) adsorbs 21.8 wt % CO2 (4.95 mmol g−1). It shows a Henry CO2/N2 selectivity of 15 and an ideal adsorbed solution theory (IAST) selectivity of 12 at p=1 bar. As a CO2 adsorbent, this compound is the best-performing MOF to date among those bearing a nitro group as a unique chemical tag. High-resolution powder X-ray diffraction at 298 K and different CO2 loadings revealed, for the first time in a NO2-functionalized MOF, the insurgence of primary host–guest interactions involving the C(3)–NO2 moiety of the framework and the oxygen atoms of carbon dioxide, as confirmed by Grand Canonical Monte Carlo simulations. This interaction mode is markedly different from that observed in NH2-functionalized MOFs, for which the carbon atom of CO2 is involved

    Towards a muon collider

    Get PDF
    corecore