Organometallics 2015 vol.34 N16, pages 3998-4010

Pyrazole-Based PCN Pincer Complexes of Palladium(II): Mono- and Dinuclear Hydroxide Complexes and Ligand Rollover C-H Activation

Bailey W., Luconi L., Rossin A., Yakhvarov D., Flowers S., Kaminsky W., Kemp R., Giambastiani G., Goldberg K.

Kazan Federal University, 420008, Kremlevskaya 18, Kazan, Russia

Abstract

© 2015 American Chemical Society. Palladium complexes of the novel unsymmetrical phosphine pyrazole-containing pincer ligands PCN^{H} ($PCN^{H} = 1-[3-[(di-t$ rt-butylphosphino)methyl]phenyl]-1H-pyrazole) and PCN^{Me} (PCN^{Me} = 1-[3-[(di-trt-butylphosphino)methyl]phenyl]-5-methyl-1H-pyrazole) have been prepared and characterized through single-crystal X-ray diffraction and multinuclear ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectroscopy. In preparations of the monomeric hydroxide species (PCN^H)Pd(OH), an unexpected N detachment followed by C-H activation on the heterocycle 5-position took place resulting in conversion of the monoanionic {P,C⁻,N} framework into a dianionic {P,C⁻,C⁻} ligand set. The dinuclear hydroxide-bridged species (PCN^H)Pd(μ -OH)Pd(PCC) was the final product obtained under ambient conditions. The "rollover" activation was followed via ³¹P{¹H} NMR spectroscopy, and dinuclear cationic μ -OH and monomeric Pd^{II} hydroxide intermediates were identified. DFT computational analysis of the process (M06//6-31G*, THF) showed that the energy barriers for the pyrazolyl rollover and for C-H activation through a σ-bond metathesis reaction are low enough to be overcome under ambient-temperature conditions, in line with the experimental findings. In contrast to the PCN^H system, no "rollover" reactivity was observed in the PCN^{Me} system, and the terminal hydroxide complex (PCN^{Me})Pd(OH) could be readily isolated and fully characterized. (Chemical Equation Presented).

http://dx.doi.org/10.1021/acs.organomet.5b00355