25 research outputs found

    Sperm whales forage year-round in the ross sea region

    Get PDF
    We investigated the seasonal and spatial occurrence of sperm whale (Physeter macrocephalus) in the Ross Sea region of the Southern Ocean derived from passive acoustic data. Two Autonomous Multichannel Acoustic Recorders (AMARs) moored about 10 m above the seabed were deployed in the austral summer of 2018 and recovered 1 year later. The northern AMAR (A3) was located on the Pacific-Antarctic Ridge at 63.7°S and the southern AMAR (A1) at 73.1°S on the Iselin Bank, part of the continental slope of the Ross Sea. Sperm whale echolocation signals were detected using signal processing scripts and validated by visual inspection of spectrograms. Our results demonstrate that sperm whales are present in the Ross Sea region year-round. At A1, sperm whale vocalisations were detected in every month between February and November, but absent in December and January. Whales were detected most often in February with an average of 0.310 detections per hour. Sperm whale vocalisations were detected at station A3 in every month except February when we had no observations. Our results contrast to a paucity of reported sightings of sperm whales from fishing and research vessels in the Ross Sea region between December and February. Probabilities of detecting sperm whales at A3 were on average 14.2 times higher than at A1 for the same month and monthly mean detections per hour were an average of 74.4 times higher at A3 than A1. At A1, we found a significant preference for day-time foraging rather than during the night or nautical twilight. In contrast, at A3, no clear day/dusk/night/dawn differences in sperm whale occurrence were found. Low sea-ice concentration (< 80%) and open water within ∌50 km were necessary but not sufficient conditions for higher detection rates of sperm whales (>0.1 detections per hour). Overall, our research provides baseline information on sperm whale occurrence and establishes a method to track long-term change to help evaluate the conservation value of the Ross Sea region Marine Protected Area

    Fin Whale (Balaenoptera physalus) in the Ligurian Sea: Preliminary Study on Acoustics Demonstrates Their Regular Occurrence in Autumn

    Get PDF
    The patterns of movement of the fin whale (Balaenoptera physalus (Linnaeus, 1758)) in the Mediterranean Sea are still a matter of debate. Feeding aggregations are well known in the Corso-Liguro-Provençal Basin from July to September, but little is known for the autumn and winter seasons. Passive acoustic monitoring (PAM) was implemented in the Ligurian Sea to overcome this gap and to investigate the temporal and spatial variation of fin whale acoustic presence. From July to December 2011, five autonomous recorders were deployed at between 700 and 900 m depths. Fin whale calls were automatically detected almost every day, with higher vocalization rates in October, November, and December. Furthermore, daily vocalization rates were higher during light hours, and closer to the coast. These outcomes suggest that not all the individuals migrate, staying in the area also during autumn for feeding or breeding purposes. The dial cycle of vocalization might be related to feeding activities and zooplankton vertical migration, whereas the proximity to the coast can be explained by the morphology of the area that promotes the upwelling system. Although this work only represents a six-month period, certainly it suggests the need for a larger spatial and temporal PAM effort, crucial for species management and for mitigating possible impact of anthropogenic activities at the basin level

    Sense of smell in chronic rhinosinusitis: A multicentric study on 811 patients

    Get PDF
    Introduction: The impairment of the sense of smell is often related to chronic rhinosinusitis (CRS) with or without nasal polyps (CRSwNP, CRSsNP). CRSwNP is a frequent condition that drastically worsens the quality of life of those affected; it has a higher prevalence than CRSsNP. CRSwNP patients experience severe loss of smell with earlier presentation and are more likely to experience recurrence of their symptoms, often requiring revision surgery. Methods: The present study performed a multicentric data collection, enrolling 811 patients with CRS divided according to the inflammatory endotype (Type 2 and non-Type 2). All patients were referred for nasal endoscopy for the assessment of nasal polyposis using nasal polyp score (NPS); Sniffin' Sticks olfactory test were performed to measure olfactory function, and SNOT-22 (22-item sinonasal outcome test) questionnaire was used to assess patients' quality of life; allergic status was evaluated with skin prick test and nasal cytology completed the evaluation when available. Results: Data showed that Type 2 inflammation is more common than non-type 2 (656 patients versus 155) and patients suffer from worse quality of life and nasal polyp score. Moreover, 86.1% of patients with Type 2 CRSwNP were affected by a dysfunction of the sense of smell while it involved a lesser percentage of non-Type 2 patients. Indeed, these data give us new information about type-2 inflammation patients' characteristics. Discussion: The present study confirms that olfactory function weights on patients' QoL and it represents an important therapeutic goal that can also improve patients' compliance when achieved. In a future - and present - perspective of rhinological precision medicine, an impairment of the sense of smell could help the clinician to characterize patients better and to choose the best treatment available

    Hemorrhagic transformation in acute ischemic stroke patients and atrial fibrillation: time to initiation of anticoagulants and outcome

    Get PDF
    Background: In patients with acute ischemic stroke and atrial fibrillation, early anticoagulation prevents ischemic recurrence but with the risk of hemorrhagic transformation (HT). The aims of this study were to evaluate in consecutive patients with acute stroke and atrial fibrillation (1) the incidence of early HT, (2) the time to initiation of anticoagulation in patients with HT, (3) the association of HT with ischemic recurrences, and (4) the association of HT with clinical outcome at 90 days. Methods and Results: HT was diagnosed by a second brain computed tomographic scan performed 24 to 72 hours after stroke onset. The incidence of ischemic recurrences as well as mortality or disability (modified Rankin Scale scores >2) were evaluated at 90 days. Ischemic recurrences were the composite of ischemic stroke, transient ischemic attack, or systemic embolism. Among the 2183 patients included in the study, 241 (11.0%) had HT. Patients with and without HT initiated anticoagulant therapy after a mean 23.3 and 11.6 days, respectively, from index stroke. At 90 days, 4.6% (95% confidence interval, 2.3–8.0) of the patients with HT had ischemic recurrences compared with 4.9% (95% confidence interval, 4.0–6.0) of those without HT; 53.1% of patients with HT were deceased or disabled compared with 35.8% of those without HT. On multivariable analysis, HT was associated with mortality or disability (odds ratio, 1.71; 95% confidence interval, 1.24–2.35). Conclusions: In patients with HT, anticoagulation was initiated about 12 days later than patients without HT. This delay was not associated with increased detection of ischemic recurrence. HT was associated with increased mortality or disability

    Developing an Integrated Ocean Observing System for New Zealand

    Get PDF
    New Zealand (NZ) is an island nation with stewardship of an ocean twenty times larger than its land area. While the challenges facing NZ’s ocean are similar to other maritime countries, no coherent national plan exists that meets the needs of scientists, stakeholders or kaitiakitanga (guardianship) of NZ’s ocean in a changing climate. The NZ marine science community used the OceanObs’19 white paper to establish a framework and implementation plan for a collaborative NZ ocean observing system (NZ-OOS). Co-production of ocean knowledge with Māori will be embedded in this national strategy for growing a sustainable, blue economy for NZ. The strengths of an observing system for a relatively small nation come from direct connections between the science impetus through to users and stakeholders of an NZ-OOS. The community will leverage off existing ocean observations to optimize effort and resources in a system that has historically made limited investment in ocean observing. The goal of the community paper will be achieved by bringing together oceanographers, data scientists and marine stakeholders to develop an NZ-OOS that provides best knowledge and tools to the sectors of society that use or are influenced by the ocean

    The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males

    Get PDF
    The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Deep Diving Odontocetes Foraging Strategies and Their Prey Field as Determined by Acoustic Techniques

    Get PDF
    Ph.D. University of Hawaii at Manoa 2015.Includes bibliographical references.Deep diving odontocetes, like sperm whales, beaked whales, Risso's dolphins, and pilot whales are known to forage at deep depths in the ocean on squid and fish. These marine mammal species are top predators and for this reason are very important for the ecosystems they live in, since they can affect prey populations and control food web dynamics through top-down effects. The studies presented in this thesis investigate deep diving odontocetes‟ foraging strategies, and the density and size of their potential prey in the deep ocean using passive and active acoustic techniques. Ecological Acoustic Recorders (EAR) were used to monitor the foraging activity of deep diving odontocetes at three locations around the world: the Josephine Seamount High Sea Marine Protected Area (JHSMPA), the Ligurian Sea, and along the Kona coast of the island of Hawaii. In the JHSMPA, sperm whales‟ and beaked whales‟ foraging rates do not differ between night-time and day-time. However, in the Ligurian Sea, sperm whales switch to night-time foraging as the winter approaches, while beaked whales alternate between hunting mainly at night, and both at night and at day. Spatial differences were found in deep diving odontocetes‟ foraging activity in Hawaii where they forage most in areas with higher chlorophyll concentrations. Pilot whales (and false killer whales, clustered together in the category "blackfishes") and Risso's dolphins forage mainly at night at all locations. These two species adjust their foraging activity with the length of the night. The density and size of animals living in deep sea scattering layers was studied using a DIDSON imaging sonar at multiple stations along the Kona coast of Hawaii. The density of animals was affected by location, depth, month, and the time of day. The size of animals was influenced by station and month. The DIDSON proved to be a successful, non-invasive technique to study density and size of animals in the deep sea. Densities were found to be an order of magnitude higher than previously found with trawls, and sizes of animals were found to be 3-4 times larger than in trawl data
    corecore