38 research outputs found

    Development of an innovative device for beam range monitoring in particle therapy

    Get PDF
    The Particle Therapy (PT) is a particular kind of radiation therapy in which accelerated light ions beams are exploited instead of photons, commonly used in conventional radiotherapy. One of the most advantageous PT features is its capability to achieve high localised dose distributions, allowing to concentrate most of the energy release in the tumour volume. As a results, the undesired amount of radiation absorbed by the healthy tissues is minimised, and the probability of side effects occurrence is reduced. One of the most important still open issue in PT is represented by the treatment quality assurance, since a control system capable to provide a real-time feedback on the dose distribution actually delivered to the patient is missing in the clinical practice. In PT the capability to deliver the dose at a certain depth depends from the capability to properly predict the beam range in the patient, then the scientific community have addressed several researches to develop on-line beam range verification techniques. In PT the primary beam particles does not escape from the patient, and the most followed approach consists of an indirect range measurement, exploiting the secondary particles produced due to the nuclear interaction between the beam projectiles and the crossed tissues nuclei. In this Ph.D. thesis an innovative range verification technique that exploits charged secondary fragments, particularly suitable for 12C ion treatments, is proposed. In particular, the development of a detector, named Dose Profiler (DP) and specifically designed for this purpose, is presented. The detector, assembled and tested using a proton beam in 2017, has been included in a clinical trial that will be performed at CNAO. The DP design and the performances measured using MIPs and protons are reviewed, as well the preliminary results obtained in a test with an anthropomorphic phantom. The feasibility of the proposed technique is discussed

    Monitoring of hadrontherapy treatments by means of charged particle detection

    Get PDF
    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages

    Intraoperative probe detecting β− decays in brain tumour radio-guided surgery

    Get PDF
    Abstract Radio-guided surgery (RGS) is a technique to intraoperatively detect tumour remnants, favouring a radical resection. Exploiting β − emitting tracers provides a higher signal to background ratio compared to the established technique with γ radiation, allowing the extension of the RGS applicability range. We developed and tested a detector based on para-terphenyl scintillator with high sensitivity to low energy electrons and almost transparent to γ s to be used as intraoperative probe for RGS with β − emitting tracer. Portable read out electronics was customised to match the surgeon needs. This probe was used for preclinical test on specific phantoms and a test on "ex vivo" specimens from patients affected by meningioma showing very promising results for the application of this new technique on brain tumours. In this paper, the prototype of the intraoperative probe and the tests are discussed; then, the results on meningioma are used to make predictions on the performance of the probe detecting residuals of a more challenging and more interesting brain tumour: the glioma

    Nucleon Structure Functions at Moderate Q**2: Relativistic Constituent Quarks and Spectator Mass Spectrum

    Get PDF
    We present a model description of the nucleon valence structure function applicable over the entire region of the Bjorken variable x, and above moderate values of Q**2 (> 1 GeV**2). We stress the importance of describing the complete spectrum of intermediate states which are spectator to the deep-inelastic collision. At a scale of 1 GeV**2 the relevant degrees of freedom are constituent quarks and pions. The large-x region is then described in terms of scattering from constituent quarks in the nucleon, while the dressing of constituent quarks by pions plays an important role at intermediate x values. The correct small-x behavior, which is necessary for the proper normalization of the valence distributions, is guaranteed by modeling the asymptotic spectator mass spectrum according to Regge phenomenology.Comment: 44 pages RevTeX, 9 uuencoded figures, accepted for publication in Nucl. Phys.

    Clinical, epidemiological, and therapeutic hallmarks of pyoderma gangrenosum: a case series of 35 patients

    Get PDF
    BackgroundOver the past few decades, advances in medical research and diagnostic tools have shed light on some aspects of pyoderma gangrenosum (PG). Nevertheless, the multifactorial etiology, pathogenesis, and optimal management strategies for PG need to be further investigated. To address these knowledge gaps and contribute to a better understanding of this complex dermatological disorder, we collected epidemiological, clinical, and therapeutic aspects of a case series of PG patients occurring in our department over the past 10 years.BackgroundOver the past few decades, advances in medical research and diagnostic tools have shed light on some aspects of pyoderma gangrenosum (PG). Nevertheless, the multifactorial etiology, pathogenesis, and optimal management strategies for PG need to be further investigated. To address these knowledge gaps and contribute to a better understanding of this complex dermatological disorder, we collected epidemiological, clinical, and therapeutic aspects of a case series of PG patients occurring in our department over the past 10 years.MethodsWe performed a single-centered, retrospective, observational study analyzing all cases with a diagnosis of PG observed at the Dermatology clinic of the Fondazione Policlinico A. Gemelli IRCCS Catholic University from January 1, 2013, to January 1, 2023. For each case, we retrieved demographic data, the presence of other skin and systemic conditions, and the histopathological and clinical characteristics of PG, such as clinical variant, number of lesions, disease localization, previous therapy, response to treatment, and occurrence of relapse.ResultsWe included 35 patients, 22 females and 13 males with a mean age of 40.0 years. Twenty patients (57.1%) had multiple localizations of disease, and the most commonly involved site was the lower limbs (85.7%). The lesions were mainly associated with inflammatory bowel diseases (51.4%) and hidradenitis suppurativa (37.1%). Clinical resolution with complete re-epithelialization was achieved in 25 patients (71.4%) with an average time of 20.8 months. On average, patients who underwent therapy with biological drugs had better outcomes.ConclusionsPG is a severe, rare, and pleomorphic disease associated with a broad spectrum of conditions. Corticosteroids remain the primary first-line approach for severe forms, but using biological immunosuppressants is promising

    FOOT: a new experiment to measure nuclear fragmentation at intermediate energies

    Get PDF
    Summary: Charged particle therapy exploits proton or 12C beams to treat deep-seated solid tumors. Due to the advantageous characteristics of charged particles energy deposition in matter, the maximum of the dose is released to the tumor at the end of the beam range, in the Bragg peak region. However, the beam nuclear interactions with the patient tissues induces fragmentation both of projectile and target nuclei and needs to be carefully taken into account. In proton treatments, target fragmentation produces low energy, short range fragments along all the beam range, which deposit a non negligible dose in the entry channel. In 12C treatments the main concern is represented by long range fragments due to beam fragmentation that release their dose in the healthy tissues beyond the tumor. The FOOT experiment (FragmentatiOn Of Target) of INFN is designed to study these processes, in order to improve the nuclear fragmentation description in next generation Treatment Planning Systems and the treatment plans quality. Target (16O and 12C nuclei) fragmentation induced by –proton beams at therapeutic energies will be studied via an inverse kinematic approach, where 16O and 12C therapeutic beams impinge on graphite and hydrocarbon targets to provide the nuclear fragmentation cross section on hydrogen. Projectile fragmentation of 16O and 12C beams will be explored as well. The FOOT detector includes a magnetic spectrometer for the fragments momentum measurement, a plastic scintillator for ΔE and time of flight measurements and a crystal calorimeter to measure the fragments kinetic energy. These measurements will be combined in order to make an accurate fragment charge and isotopic identification. Keywords: Hadrontherapy, Nuclear fragmentation cross sections, Tracking detectors, Scintillating detector

    Localization of anatomical changes in patients during proton therapy with in-beam PET monitoring: a voxel-based morphometry approach exploiting Monte Carlo simulations

    Get PDF
    Purpose: In-beam positron emission tomography (PET) is one of the modalities that can be used for in vivo noninvasive treatment monitoring in proton therapy. Although PET monitoring has been frequently applied for this purpose, there is still no straightforward method to translate the information obtained from the PET images into easy-to-interpret information for clinical personnel. The purpose of this work is to propose a statistical method for analyzing in-beam PET monitoring images that can be used to locate, quantify, and visualize regions with possible morphological changes occurring over the course of treatment. Methods: We selected a patient treated for squamous cell carcinoma (SCC) with proton therapy, to perform multiple Monte Carlo (MC) simulations of the expected PET signal at the start of treatment, and to study how the PET signal may change along the treatment course due to morphological changes. We performed voxel-wise two-tailed statistical tests of the simulated PET images, resembling the voxel-based morphometry (VBM) method commonly used in neuroimaging data analysis, to locate regions with significant morphological changes and to quantify the change. Results: The VBM resembling method has been successfully applied to the simulated in-beam PET images, despite the fact that such images suffer from image artifacts and limited statistics. Three dimensional probability maps were obtained, that allowed to identify interfractional morphological changes and to visualize them superimposed on the computed tomography (CT) scan. In particular, the characteristic color patterns resulting from the two-tailed statistical tests lend themselves to trigger alarms in case of morphological changes along the course of treatment. Conclusions: The statistical method presented in this work is a promising method to apply to PET monitoring data to reveal interfractional morphological changes in patients, occurring over the course of treatment. Based on simulated in-beam PET treatment monitoring images, we showed that with our method it was possible to correctly identify the regions that changed. Moreover we could quantify the changes, and visualize them superimposed on the CT scan. The proposed method can possibly help clinical personnel in the replanning procedure in adaptive proton therapy treatments

    In-vivo range verification analysis with in-beam PET data for patients treated with proton therapy at CNAO

    Get PDF
    Morphological changes that may arise through a treatment course are probably one of the most significant sources of range uncertainty in proton therapy. Non-invasive in-vivo treatment monitoring is useful to increase treatment quality. The INSIDE in-beam Positron Emission Tomography (PET) scanner performs in-vivo range monitoring in proton and carbon therapy treatments at the National Center of Oncological Hadrontherapy (CNAO). It is currently in a clinical trial (ID: NCT03662373) and has acquired in-beam PET data during the treatment of various patients. In this work we analyze the in-beam PET (IB-PET) data of eight patients treated with proton therapy at CNAO. The goal of the analysis is twofold. First, we assess the level of experimental fluctuations in inter-fractional range differences (sensitivity) of the INSIDE PET system by studying patients without morphological changes. Second, we use the obtained results to see whether we can observe anomalously large range variations in patients where morphological changes have occurred. The sensitivity of the INSIDE IB-PET scanner was quantified as the standard deviation of the range difference distributions observed for six patients that did not show morphological changes. Inter-fractional range variations with respect to a reference distribution were estimated using the Most-Likely-Shift (MLS) method. To establish the efficacy of this method, we made a comparison with the Beam's Eye View (BEV) method. For patients showing no morphological changes in the control CT the average range variation standard deviation was found to be 2.5 mm with the MLS method and 2.3 mm with the BEV method. On the other hand, for patients where some small anatomical changes occurred, we found larger standard deviation values. In these patients we evaluated where anomalous range differences were found and compared them with the CT. We found that the identified regions were mostly in agreement with the morphological changes seen in the CT scan

    Monitoring Carbon Ion Beams Transverse Position Detecting Charged Secondary Fragments: Results From Patient Treatment Performed at CNAO

    Get PDF
    Particle therapy in which deep seated tumours are treated using 12C ions (Carbon Ions RadioTherapy or CIRT) exploits the high conformity in the dose release, the high relative biological effectiveness and low oxygen enhancement ratio of such projectiles. The advantages of CIRT are driving a rapid increase in the number of centres that are trying to implement such technique. To fully profit from the ballistic precision achievable in delivering the dose to the target volume an online range verification system would be needed, but currently missing. The 12C ions beams range could only be monitored by looking at the secondary radiation emitted by the primary beam interaction with the patient tissues and no technical solution capable of the needed precision has been adopted in the clinical centres yet. The detection of charged secondary fragments, mainly protons, emitted by the patient is a promising approach, and is currently being explored in clinical trials at CNAO. Charged particles are easy to detect and can be back-tracked to the emission point with high efficiency in an almost background-free environment. These fragments are the product of projectiles fragmentation, and are hence mainly produced along the beam path inside the patient. This experimental signature can be used to monitor the beam position in the plane orthogonal to its flight direction, providing an online feedback to the beam transverse position monitor chambers used in the clinical centres. This information could be used to cross-check, validate and calibrate, whenever needed, the information provided by the ion chambers already implemented in most clinical centres as beam control detectors. In this paper we study the feasibility of such strategy in the clinical routine, analysing the data collected during the clinical trial performed at the CNAO facility on patients treated using 12C ions and monitored using the Dose Profiler (DP) detector developed within the INSIDE project. On the basis of the data collected monitoring three patients, the technique potential and limitations will be discussed
    corecore