18 research outputs found

    Epigenomic and genomic dissection of oestrogen receptor-positive breast cancer

    No full text
    Genetic and Epigenetic mechanisms underlie the natural complexity of phenotypical and morphological aspects of cancer. Extensive phenotypical intra and inter-patient heterogeneity of cancer specimens is a relevant limiting factor in cancer studies. Besides, loss of cell identity and frequent phenotypic switches occurring during cancer progression are elusive and intrinsically challenging to study. Historically, significant efforts have been devoted to identifying the genetic alterations occurring within DNA coding regions of cancer cells. More recently, new studies point the attention on the strong interplay between the epigenetic layout of cells and non-coding regulatory network of DNA. Mutations and alterations of the epigenetic asset among these regions are frequent in cancer; however relevant questions about the different key players involved are still unsolved. This dissertation aims to provide novel insights into the complex regulatory network of oestrogen receptor-positive breast cancer progression by mining the epigenetic and genetic landscape of patient tissues. We depict the epigenomic landscape ERα-positive BC focusing on active promoters and enhancers. We describe a novel computational workflow which led to the identification of YY1 and SLC9A3R1 proteins. We show data supporting the concept of a phenotypical evolution of epigenetic traits during cancer progression and experimentally validate the findings. Also, we introduce a new approach aiming to prioritise the investigation of sites prone to be critical players in breast cancer by coupling the systematic tracking of regulatory regions modulation during cancer progression with single nucleotide variants (SNV) discovery at high depth. This approach resulted with the identification of a recurrent mutation occurring in the core of a CTCF site lying at a border of a silent TAD in q25.1 of the chromosome 17. Finally, we provide evidence of an epigenetic induced reprogramming occurring in a distinct subpopulation of cancer cell lines exhibiting high plasticity. These cells become quiescent upon oestrogen deprivation and resume proliferation after a deterministic epigenetic modulation of NOTCH target regions.Open Acces

    Large-scale profiling of signalling pathways reveals an asthma specific signature in bronchial smooth muscle cells

    Get PDF
    Background: Bronchial smooth muscle (BSM) cells from asthmatic patients maintain in vitro a distinct hyper-reactive (“primed”) phenotype, characterized by increased release of pro-inflammatory factors and mediators, as well as hyperplasia and/or hypertrophy. This “primed” phenotype helps to understand pathogenesis of asthma, as changes in BSM function are essential for manifestation of allergic and inflammatory responses and airway wall remodelling. Objective: To identify signalling pathways in cultured primary BSMs of asthma patients and non-asthmatic subjects by genome wide profiling of differentially expressed mRNAs and activated intracellular signalling pathways (ISPs). Methods: Transcriptome profiling by cap-analysis-of-gene-expression (CAGE), which permits selection of preferentially capped mRNAs most likely to be translated into proteins, was performed in human BSM cells from asthmatic (n=8) and non-asthmatic (n=6) subjects and OncoFinder tool were then exploited for identification of ISP deregulations. Results: CAGE revealed >600 RNAs differentially expressed in asthma vs control cells (p≤0.005), with asthma samples showing a high degree of similarity among them. Comprehensive ISP activation analysis revealed that among 269 pathways analysed, 145 (p<0.05) or 103 (p<0.01) are differentially active in asthma, with profiles that clearly characterize BSM cells of asthmatic individuals. Notably, we identified 7 clusters of coherently acting pathways functionally related to the disease, with ISPs down-regulated in asthma mostly targeting cell death-promoting pathways and up-regulated ones affecting cell growth and proliferation, inflammatory response, control of smooth muscle contraction and hypoxia-related signalization. Conclusions: These first-time results can now be exploited toward development of novel therapeutic strategies targeting ISP signatures linked to asthma pathophysiology

    B4GALT1 is a new candidate to maintain the stemness of lung cancer stem cells

    No full text
    Background: According to the cancer stem cells (CSCs) hypothesis, a population of cancer cells with stem cell properties is responsible for tumor propagation, drug resistance, and disease recurrence. Study of the mechanisms responsible for lung CSCs propagation is expected to provide better understanding of cancer biology and new opportunities for therapy. Methods: The Lung Adenocarcinoma (LUAD) NCI-H460 cell line was grown either as 2D or as 3D cultures. Transcriptomic and genome-wide chromatin accessibility studies of 2D vs. 3D cultures were carried out using RNA-sequencing and Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq), respectively. Reverse transcription polymerase chain reaction (RT-PCR) was also carried out on RNA extracted from primary cultures derived from malignant pleural eusions to validate RNA-seq results. Results: RNA-seq and ATAC-seq data disentangled transcriptional and genome accessibility variability of 3D vs. 2D cultures in NCI-H460 cells. The examination of genomic landscape of genes upregulated in 3D vs. 2D cultures led to the identification of 2D cultures led to the identification of Beta-1,4-galactosyltranferase 1 (B4GALT1) as the top candidate. B4GALT1 as the top candidate. B4GALT1 was validated as a stemness factor, since its silencing caused strong inhibition of 3D spheroid formation. Conclusion: Combined transcriptomic and chromatin accessibility study of 3D vs. 2D LUAD cultures led to the identification of B4GALT1 as a new factor involved in the propagation and maintenance of LUAD CSCs

    Preliminary Results of CitraVes™ Effects on Low Density Lipoprotein Cholesterol and Waist Circumference in Healthy Subjects after 12 Weeks: A Pilot Open-Label Study

    No full text
    Appropriate monitoring and control of modifiable risk factors, such as the level of low-density lipoprotein cholesterol (LDL-C) and other types of dyslipidemia, have an important role in the prevention of cardiovascular diseases (CVD). Recently, various nutraceuticals with lipid-lowering effects have gained attention. In addition to the plant-derived bioactive compounds, recent studies suggested that plant cells are able to release small lipoproteic structures named extracellular vesicles (EVs). The interaction between EVs and mammalian cells could lead to beneficial effects through anti-inflammatory and antioxidant activities. The present study aimed to assess the safety of the new patented plant-based product citraVes™, containing extracellular vesicles (EVs) from Citrus limon (L.) Osbeck juice, and to investigate its ability to modulate different CV risk factors in healthy subjects. A cohort of 20 healthy volunteers was recruited in a prospective open-label study. All participants received the supplement in a spray-dried formulation at a stable dose of 1000 mg/day for 3 months. Anthropometric and hematobiochemical parameters were analyzed at the baseline and after the follow-up period of 1 and 3 months. We observed that the supplement has an effect on two key factors of cardiometabolic risk in healthy subjects. A significant change in waist circumference was found in women after 4 (85.4 [79.9, 91.0] cm, p &lt; 0.005) and 12 (85.0 [80.0, 90.0] cm, p &lt; 0.0005) weeks, when compared to the baseline value (87.6 [81.7, 93.6] cm). No difference was found in men (baseline: 100.3 [95.4, 105.2] cm; 4 weeks: 102.0 [95.7, 108.3] cm; 12 weeks: 100.0 [95.3, 104.7] cm). The level of LDL-C was significantly lower at 12 weeks versus 4 weeks (p = 0.0064). Our study evaluated, for the first time, the effects of a natural product containing plant-derived EVs on modifiable risk factors in healthy volunteers. The results support the use of EV extracts to manage cardiometabolic risk factors successfully

    hMENA isoforms regulate cancer intrinsic type I IFN signaling and extrinsic mechanisms of resistance to immune checkpoint blockade in NSCLC

    No full text
    Background Understanding how cancer signaling pathways promote an immunosuppressive program which sustains acquired or primary resistance to immune checkpoint blockade (ICB) is a crucial step in improving immunotherapy efficacy. Among the pathways that can affect ICB response is the interferon (IFN) pathway that may be both detrimental and beneficial. The immune sensor retinoic acid-inducible gene I (RIG-I) induces IFN activation and secretion and is activated by actin cytoskeleton disturbance. The actin cytoskeleton regulatory protein hMENA, along with its isoforms, is a key signaling hub in different solid tumors, and recently its role as a regulator of transcription of genes encoding immunomodulatory secretory proteins has been proposed. When hMENA is expressed in tumor cells with low levels of the epithelial specific hMENA11a isoform, identifies non-small cell lung cancer (NSCLC) patients with poor prognosis. Aim was to identify cancer intrinsic and extrinsic pathways regulated by hMENA11a downregulation as determinants of ICB response in NSCLC. Here, we present a potential novel mechanism of ICB resistance driven by hMENA11a downregulation.Methods Effects of hMENA11a downregulation were tested by RNA-Seq, ATAC-Seq, flow cytometry and biochemical assays. ICB-treated patient tumor tissues were profiled by Nanostring IO 360 Panel enriched with hMENA custom probes. OAK and POPLAR datasets were used to validate our discovery cohort.Results Transcriptomic and biochemical analyses demonstrated that the depletion of hMENA11a induces IFN pathway activation, the production of different inflammatory mediators including IFNβ via RIG-I, sustains the increase of tumor PD-L1 levels and activates a paracrine loop between tumor cells and a unique macrophage subset favoring an epithelial-mesenchymal transition (EMT). Notably, when we translated our results in a clinical setting of NSCLC ICB-treated patients, transcriptomic analysis revealed that low expression of hMENA11a, high expression of IFN target genes and high macrophage score identify patients resistant to ICB therapy.Conclusions Collectively, these data establish a new function for the actin cytoskeleton regulator hMENA11a in modulating cancer cell intrinsic type I IFN signaling and extrinsic mechanisms that promote protumoral macrophages and favor EMT. These data highlight the role of actin cytoskeleton disturbance in activating immune suppressive pathways that may be involved in resistance to ICB in NSCLC

    KEAP1 and TP53 frame genomic, evolutionary and immunological subtypes of lung adenocarcinoma with different sensitivity to immunotherapy

    No full text
    The connection between driver mutations and efficacy of immune-checkpoint inhibitors (ICIs) is the focus of intense investigations. In lung adenocarcinoma (LUAD), KEAP1/STK11 alterations have been tied to immunoresistance. Nevertheless, the heterogeneity characterizing immunotherapy efficacy suggests the contribution of still unappreciated events

    Che-1/AATF-induced transcriptionally active chromatin promotes cell proliferation in multiple myeloma

    No full text
    Multiplemyeloma (MM) is a hematologicmalignancy produced by a clonal expansion of plasma cells and characterized by abnormal production and secretion of monoclonal antibodies. This pathologyexhibitsanenormousheterogeneity resultingnot onlyfromgenetic alterations but also from several epigenetic dysregulations. Here we provide evidence that Che-1/AATF (Che-1), an interactor of RNA polymerase II, promotes MM proliferation by affecting chromatin structure and sustaining global gene expression. We found that Che-1 depletion leads to a reduction of active chromatin by inducing a global decrease of histone acetylation. In this context, Che-1 directly interacts with histones and displaces histone deacetylase class I members from them. Strikingly, transgenic mice expressing human Che-1 in plasma cells develop MM with clinical features resembling those observed in the human disease. Finally, Che-1 downregulation decreases BRD4 chromatin accumulation to further sensitize MM cells to bromodomain and external domain inhibitors. These findings identify Che-1 as a promising target forMMtherapy, alone or in combination with bromodomain and external domain inhibitors

    Small extracellular vesicles deliver miR-21 and miR-217 as pro-senescence effectors to endothelial cells

    No full text
    The role of epigenetics in endothelial cell senescence is a cutting-edge topic in ageing research. However, little is known of the relative contribution to pro-senescence signal propagation provided by microRNAs shuttled by extracellular vesicles (EVs) released from senescent cells. Analysis of microRNA and DNA methylation profiles in non-senescent (control) and senescent (SEN) human umbilical vein endothelial cells (HUVECs), and microRNA profiling of their cognate small EVs (sEVs) and large EVs demonstrated that SEN cells released a significantly greater sEV number than control cells. sEVs were enriched in miR-21-5p and miR-217, which target DNMT1 and SIRT1. Treatment of control cells with SEN sEVs induced a miR-21/miR-217-related impairment of DNMT1-SIRT1 expression, the reduction of proliferation markers, the acquisition of a senescent phenotype and a partial demethylation of the locus encoding for miR-21. MicroRNA profiling of sEVs from plasma of healthy subjects aged 40-100 years showed an inverse U-shaped age-related trend for miR-21-5p, consistent with senescence-associated biomarker profiles. Our findings suggest that miR-21-5p/miR-217 carried by SEN sEVs spread pro-senescence signals, affecting DNA methylation and cell replication

    Type I IFNs promote cancer cell stemness by triggering the epigenetic regulator KDM1B

    Get PDF
    Cancer stem cells (CSCs) are a subpopulation of cancer cells endowed with high tumorigenic, chemoresistant and metastatic potential. Nongenetic mechanisms of acquired resistance are increasingly being discovered, but molecular insights into the evolutionary process of CSCs are limited. Here, we show that type I interferons (IFNs-I) function as molecular hubs of resistance during immunogenic chemotherapy, triggering the epigenetic regulator demethylase 1B (KDM1B) to promote an adaptive, yet reversible, transcriptional rewiring of cancer cells towards stemness and immune escape. Accordingly, KDM1B inhibition prevents the appearance of IFN-I-induced CSCs, both in vitro and in vivo. Notably, IFN-I-induced CSCs are heterogeneous in terms of multidrug resistance, plasticity, invasiveness and immunogenicity. Moreover, in breast cancer (BC) patients receiving anthracycline-based chemotherapy, KDM1B positively correlated with CSC signatures. Our study identifies an IFN-I -&gt; KDM1B axis as a potent engine of cancer cell reprogramming, supporting KDM1B targeting as an attractive adjunctive to immunogenic drugs to prevent CSC expansion and increase the long-term benefit of therapy.Type I interferons have been described to have protumor or antitumor functions depending on context. Here the authors show a protumor function for type I interferons in that they promote cancer stem cells by upregulating the chromatin remodeling factor KDM1B
    corecore