399 research outputs found

    Allele-specific miRNA-binding analysis identifies candidate target genes for breast cancer risk

    Get PDF
    Most breast cancer (BC) risk-associated single-nucleotide polymorphisms (raSNPs) identified in genome-wide association studies (GWAS) are believed to cis-regulate the expression of genes. We hypothesise that cis-regulatory variants contributing to disease risk may be affecting microRNA (miRNA) genes and/or miRNA binding. To test this, we adapted two miRNA-binding prediction algorithms-TargetScan and miRanda-to perform allele-specific queries, and integrated differential allelic expression (DAE) and expression quantitative trait loci (eQTL) data, to query 150 genome-wide significant ( P≤5×10-8 ) raSNPs, plus proxies. We found that no raSNP mapped to a miRNA gene, suggesting that altered miRNA targeting is an unlikely mechanism involved in BC risk. Also, 11.5% (6 out of 52) raSNPs located in 3'-untranslated regions of putative miRNA target genes were predicted to alter miRNA::mRNA (messenger RNA) pair binding stability in five candidate target genes. Of these, we propose RNF115, at locus 1q21.1, as a strong novel target gene associated with BC risk, and reinforce the role of miRNA-mediated cis-regulation at locus 19p13.11. We believe that integrating allele-specific querying in miRNA-binding prediction, and data supporting cis-regulation of expression, improves the identification of candidate target genes in BC risk, as well as in other common cancers and complex diseases.Funding Agency Portuguese Foundation for Science and Technology CRESC ALGARVE 2020 European Union (EU) 303745 Maratona da Saude Award DL 57/2016/CP1361/CT0042 SFRH/BPD/99502/2014 CBMR-UID/BIM/04773/2013 POCI-01-0145-FEDER-022184info:eu-repo/semantics/publishedVersio

    Multi-ancestry Mendelian randomization of omics traits revealing drug targets of COVID-19 severity

    Get PDF
    BACKGROUND: Recent omic studies prioritised several drug targets associated with coronavirus disease 2019 (COVID-19) severity. However, little evidence was provided to systematically estimate the effect of drug targets on COVID-19 severity in multiple ancestries. METHODS: In this study, we applied Mendelian randomization (MR) and colocalization approaches to understand the putative causal effects of 16,059 transcripts and 1608 proteins on COVID-19 severity in European and effects of 610 proteins on COVID-19 severity in African ancestry. We further integrated genetics, clinical and literature evidence to prioritise drug targets. Additional sensitivity analyses including multi-trait colocalization and phenome-wide MR were conducted to test for MR assumptions. FINDINGS: MR and colocalization prioritized four protein targets, FCRL3, ICAM5, ENTPD5 and OAS1 that showed effect on COVID-19 severity in European ancestry. One protein target, SERPINA1 showed a stronger effect in African ancestry but much weaker effect in European ancestry (odds ratio [OR] in Africans=0.369, 95%CI=0.203 to 0.668, P = 9.96 × 10(−4); OR in Europeans=1.021, 95%CI=0.901 to 1.157, P = 0.745), which suggested that increased level of SERPINA1 will reduce COVID-19 risk in African ancestry. One protein, ICAM1 showed suggestive effect on COVID-19 severity in both ancestries (OR in Europeans=1.152, 95%CI=1.063 to 1.249, P = 5.94 × 10(−4); OR in Africans=1.481, 95%CI=1.008 to 2.176; P = 0.045). The OAS1, SERPINA1 and ICAM1 effects were replicated using updated COVID-19 severity data in the two ancestries respectively, where alternative splicing events in OAS1 and ICAM1 also showed marginal effects on COVID-19 severity in Europeans. The phenome-wide MR of the prioritised targets on 622 complex traits provided information on potential beneficial effects on other diseases and suggested little evidence of adverse effects on major complications. INTERPRETATION: Our study identified six proteins as showing putative causal effects on COVID-19 severity. OAS1 and SERPINA1 were targets of existing drugs in trials as potential COVID-19 treatments. ICAM1, ICAM5 and FCRL3 are related to the immune system. Across the six targets, OAS1 has no reliable instrument in African ancestry; SERPINA1, FCRL3, ICAM5 and ENTPD5 showed a different level of putative causal evidence in European and African ancestries, which highlights the importance of more powerful ancestry-specific GWAS and value of multi-ancestry MR in informing the effects of drug targets on COVID-19 across different populations. This study provides a first step towards clinical investigation of beneficial and adverse effects of COVID-19 drug targets. FUNDING: No

    Replication of Previous Genome-wide Association Studies of Bone Mineral Density in Premenopausal American Women

    Get PDF
    Bone mineral density (BMD) achieved during young adulthood (peak BMD) is one of the major determinants of osteoporotic fracture in later life. Genetic variants associated with BMD have been identified by three recent genome-wide association studies. The most significant single-nucleotide polymorphisms (SNPs) from these studies were genotyped to test whether they were associated with peak BMD in premenopausal American women. Femoral neck and lumbar spine BMD were determined by dual-energy X-ray absorptiometry in two groups of premenopausal women: 1524 white women and 512 black women. In premenopausal white women, two SNPs in the C6orf97/ESR1 region were significantly associated with BMD (p < 4.8 × 10−4), with suggestive evidence for CTNNBL1 and LRP5 (p < .01). Evidence of association with one of the two SNPs in the C6orf97/ESR1 region also was observed in premenopausal black women. Furthermore, SNPs in SP7 and a chromosome 4 intergenic region showed suggestive association with BMD in black women. Detailed analyses of additional SNPs in the C6orf97/ESR1 region revealed multiple genomic blocks independently associated with femoral neck and lumbar spine BMD. Findings in the three published genome-wide association studies were replicated in independent samples of premenopausal American women, suggesting that genetic variants in these genes or regions contribute to peak BMD in healthy women in various populations. © 2010 American Society for Bone and Mineral Research

    Association between breast cancer genetic susceptibility variants and terminal duct lobular unit involution of the breast

    Get PDF
    Terminal duct lobular units (TDLUs) are the predominant source of future breast cancers, and lack of TDLU involution (higher TDLU counts, higher acini count per TDLU and the product of the two) is a breast cancer risk factor. Numerous breast cancer susceptibility single nucleotide polymorphisms (SNPs) have been identified, but whether they are associated with TDLU involution is unknown. In a pooled analysis of 872 women from two studies, we investigated 62 established breast cancer SNPs and relationships with TDLU involution. Poisson regression models with robust variance were used to calculate adjusted per-allele relative risks (with the non-breast cancer risk allele as the referent) and 95% confidence intervals between TDLU measures and each SNP. All statistical tests were two-sided; P<0.05 was considered statistically significant. Overall, 36 SNPs (58.1%) were related to higher TDLU counts although this was not statistically significant (P=0.25). Six of the 62 SNPs (9.7%) were nominally associated with at least one TDLU measure: rs616488 (PEX14), rs11242675 (FOXQ1) and rs6001930 (MKL1) were associated with higher TDLU count (P=0.047, 0.045 and 0.031, respectively); rs1353747 (PDE4D) and rs6472903 (8q21.11) were associated with higher acini count per TDLU (P=0.007 and 0.027, respectively); and rs1353747 (PDE4D) and rs204247 (RANBP9) were associated with the product of TDLU and acini counts (P=0.024 and 0.017, respectively). Our findings suggest breast cancer SNPs may not strongly influence TDLU involution. Agnostic genome-wide association studies of TDLU involution may provide new insights on its biologic underpinnings and breast cancer susceptibility

    Loss-of-function mutations in SIM1 contribute to obesity and Prader-Willi-like features

    Get PDF
    Sim1 haploinsufficiency in mice induces hyperphagic obesity and developmental abnormalities of the brain. In humans, abnormalities in chromosome 6q16, a region that includes SIM1, were reported in obese children with a Prader-Willi–like syndrome; however, SIM1 involvement in obesity has never been conclusively demonstrated. Here, SIM1 was sequenced in 44 children with Prader-Willi–like syndrome features, 198 children with severe early-onset obesity, 568 morbidly obese adults, and 383 controls. We identified 4 rare variants (p.I128T, p.Q152E, p.R581G, and p.T714A) in 4 children with Prader-Willi–like syndrome features (including severe obesity) and 4 other rare variants (p.T46R, p.E62K, p.H323Y, and p.D740H) in 7 morbidly obese adults. By assessing the carriers’ relatives, we found a significant contribution of SIM1 rare variants to intra-family risk for obesity. We then assessed functional effects of the 8 substitutions on SIM1 transcriptional activities in stable cell lines using luciferase gene reporter assays. Three mutations showed strong loss-of-function effects (p.T46R, p.H323Y, and p.T714A) and were associated with high intra-family risk for obesity, while the variants with mild or no effects on SIM1 activity were not associated with obesity within families. Our genetic and functional studies demonstrate a firm link between SIM1 loss of function and severe obesity associated with, or independent of, Prader-Willi–like features.Amélie Bonnefond, Anne Raimondo, Fanny Stutzmann, Maya Ghoussaini, Shwetha Ramachandrappa, David C. Bersten, Emmanuelle Durand, Vincent Vatin, Beverley Balkau, Olivier Lantieri, Violeta Raverdy, François Pattou, Wim Van Hul, Luc Van Gaal, Daniel J. Peet, Jacques Weill, Jennifer L. Miller, Fritz Horber, Anthony P. Goldstone, Daniel J. Driscoll, John B. Bruning, David Meyre, Murray L. Whitelaw and Philippe Frogue

    A functional variant at a prostate cancer predisposition locus at 8q24 is associated with PVT1 expression

    Get PDF
    Genetic mapping studies have identified multiple cancer susceptibility regions at chromosome 8q24, upstream of the MYC oncogene. MYC has been widely presumed as the regulated target gene, but definitive evidence functionally linking these cancer regions with MYC has been difficult to obtain. Here we examined candidate functional variants of a haplotype block at 8q24 encompassing the two independent risk alleles for prostate and breast cancer, rs620861 and rs13281615. We used the mapping of DNase I hypersensitive sites as a tool to prioritise regions for further functional analysis. This approach identified rs378854, which is in complete linkage disequilibrium (LD) with rs620861, as a novel functional prostate cancer-specific genetic variant. We demonstrate that the risk allele (G) of rs378854 reduces binding of the transcription factor YY1 in vitro. This factor is known to repress global transcription in prostate cancer and is a candidate tumour suppressor. Additional experiments showed that the YY1 binding site is occupied in vivo in prostate cancer, but not breast cancer cells, consistent with the observed cancer-specific effects of this single nucleotide polymorphism (SNP). Using chromatin conformation capture (3C) experiments, we found that the region surrounding rs378854 interacts with the MYC and PVT1 promoters. Moreover, expression of the PVT1 oncogene in normal prostate tissue increased with the presence of the risk allele of rs378854, while expression of MYC was not affected. In conclusion, we identified a new functional prostate cancer risk variant at the 8q24 locus, rs378854 allele G, that reduces binding of the YY1 protein and is associated with increased expression of PVT1 located 0.5 Mb downstream.This work was funded by Cancer Research UK (http://www.cancerresearchuk.org/) and by the Intramural Research Program, Division of Cancer Epidemiology and Genetics and Centre for Cancer Research, National Cancer Institute, National Institutes of Health, United States of America (http://www.nih.gov/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Association between Type 2 Diabetes Loci and Measures of Fatness

    Get PDF
    Background: Type 2 diabetes (T2D) is a metabolic disorder characterized by disturbances of carbohydrate, fat and protein metabolism and insulin resistance. The majority of T2D patients are obese and obesity by itself may be a cause of insulin resistance. Our aim was to evaluate whether the recently identified T2D risk alleles are associated with human measures of fatness as characterized with Dual Energy X-ray Absorptiometry (DEXA). Methodology/Principal Findings: Genotypes and phenotypes of approximately 3,000 participants from cross-sectional ERF study were analyzed. Nine single nucleotide polymorphisms (SNPs) in CDKN2AB, CDKAL1, FTO, HHEX, IGF2BP2, KCNJ11, PPARG, SLC30A8 and TCF7L2 were genotyped. We used linear regression to study association between individual SNPs and the combined allelic risk score with body mass index (BMI), fat mass index (FMI), fat percentage (FAT), waist circumference (WC) and waist to hip ratio (WHR). Significant association was observed between rs8050136 (FTO) and BMI (p = 0.003), FMI (p = 0.007) and WC (p = 0.03); fat percentage was borderline significant (p = 0.053). No other SNPs alone or combined in a risk score demonstrated significant association to the measures of fatness. Conclusions/Significance: From the recently identified T2D risk variants only the risk variant of the FTO gene (rs8050136) showed statistically significant association with BMI, FMI, and WC

    Mapping interindividual dynamics of innate immune response at single-cell resolution

    Get PDF
    Common genetic variants across individuals modulate the cellular response to pathogens and are implicated in diverse immune pathologies, yet how they dynamically alter the response upon infection is not well understood. Here, we triggered antiviral responses in human fibroblasts from 68 healthy donors, and profiled tens of thousands of cells using single-cell RNA-sequencing. We developed GASPACHO (GAuSsian Processes for Association mapping leveraging Cell HeterOgeneity), a statistical approach designed to identify nonlinear dynamic genetic effects across transcriptional trajectories of cells. This approach identified 1,275 expression quantitative trait loci (local false discovery rate 10%) that manifested during the responses, many of which were colocalized with susceptibility loci identified by genome-wide association studies of infectious and autoimmune diseases, including the OAS1 splicing quantitative trait locus in a COVID-19 susceptibility locus. In summary, our analytical approach provides a unique framework for delineation of the genetic variants that shape a wide spectrum of transcriptional responses at single-cell resolution
    • …
    corecore