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Abstract (max. 250 words) 

Terminal duct lobular units (TDLUs) are the predominant source of future breast cancers, and 

lack of TDLU involution (higher TDLU counts, higher acini count per TDLU and the product of 

the two) is a breast cancer risk factor. Numerous breast cancer susceptibility single nucleotide 

polymorphisms (SNPs) have been identified, but whether they are associated with TDLU 

involution is unknown. In a pooled analysis of 872 women from two studies, we investigated 62 

established breast cancer SNPs and relationships with TDLU involution. Poisson regression 

models with robust variance were used to calculate adjusted per-allele relative risks (with the 

non-breast cancer risk allele as the referent) and 95% confidence intervals between TDLU 

measures and each SNP. All statistical tests were two-sided; P<0.05 was considered statistically 

significant. Overall, 36 SNPs (58.1%) were related to higher TDLU counts although this was not 

statistically significant (P=0.25). Six of the 62 SNPs (9.7%) were nominally associated with at 

least one TDLU measure: rs616488 (PEX14), rs11242675 (FOXQ1) and rs6001930 (MKL1) 

were associated with higher TDLU count (P=0.047, 0.045 and 0.031, respectively); rs1353747 

(PDE4D) and rs6472903 (8q21.11) were associated with higher acini count per TDLU (P=0.007 

and 0.027, respectively); and rs1353747 (PDE4D) and rs204247 (RANBP9) were associated with 

the product of TDLU and acini counts (P=0.024 and 0.017, respectively). Our findings suggest 

breast cancer SNPs may not strongly influence TDLU involution. Agnostic genome-wide 

association studies of TDLU involution may provide new insights on its biologic into 

underpinnings and breast cancer susceptibility.
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Novelty and impact (max. 75 words) 

Terminal duct lobular units (TDLUs) are the predominant source of future breast cancers but 

whether breast cancer susceptibility loci influence their appearance in normal tissues is 

unknown. Six of 62 breast cancer susceptibility loci were nominally associated with TDLU 

appearance (TDLU involution), with limited evidence of enrichment. The genetics of TDLU 

involution may be independent of breast cancer and future agnostic genome wide association 

studies may provide new insights on its role in breast cancer. 
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Introduction 

Terminal duct lobular units (TDLUs) are the anatomical structures of the breast that 

produce milk and represent the predominant histological source of breast cancers1. During 

normal aging the number and size of TDLUs and acini (epithelial substructures within TDLUs) 

are reduced through a process known as TDLU involution. Reduced levels of TDLU involution 

has been found to be associated with increased breast cancer risk2, 3, yet whether a shared genetic 

basis exists is unknown. 

Genome-wide association studies (GWAS) have identified numerous common breast 

cancer susceptibility loci4-24 but it is unclear if they exert their effects through TDLU involution. 

Understanding whether there are associations between breast cancer susceptibility loci and 

TDLU involution could provide important insights into the role of these susceptibility loci in 

breast microanatomy, which in turn is linked to breast cancer risk. We have recently developed 

quantitative measures of TDLU involution, including TDLU count standardized to tissue area 

and median acini count per TDLU, and found multiple associations with breast cancer risk 

factors including parity25, menopausal status25 and circulating hormones26 among women who 

donated normal breast tissues. In women with benign breast disease, we have also found these 

TDLU measures to be related to breast cancer risk factors, including circulating insulin-like 

growth factors27, estrogens,28 and mammographic density (MD)29. This supports the notion that 

some breast cancer risk factors may influence their risk in part through delaying or inhibiting 

TDLU involution.  Furthermore, studies demonstrating lesser TDLU involution among women 

with a positive family history of breast cancer2, 25 suggest that this trait may have a heritable 

component. 
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We investigated the relationships between 62 well-established breast cancer susceptibility 

loci and standardized measures of TDLU involution by pooling data from two studies, the Susan 

G. Komen Tissue Bank (KTB) at the Indiana University Simon Cancer Center30 and the NCI 

Breast Radiology Evaluation and Study of Tissues (BREAST) Stamp Project31.  

Materials and Methods 

Study Population 

The Susan G. Komen Tissue Bank 

The KTB is a repository of normal breast tissues that has been recruiting women 

volunteers, aged 18-91, since 2007. The current analysis targeted a subset of 2,321 participants 

recruited from January 10, 2009 through September 14, 2012 and aged 18-84 years that have 

been previously analyzed for TDLU involution25. Details of this study population and subject 

ascertainment are described elsewhere (http://komentissuebank.iu.edu/)30. All volunteers 

provided informed consent for the use of their donated specimens and questionnaire data for 

breast cancer research. Briefly, paired normal breast tissues and blood samples were collected 

along with a self-administered questionnaire (including demographic, lifestyle, reproductive, and 

cancer related data). Tissue cores were removed from the upper outer quadrant of the breast (left 

or right) using a standardized technique with a 10-gauge needle. One sample was fixed in 10% 

buffered formalin, routinely processed to prepare paraffin embedded blocks, sectioned at 5 

microns, and stained with hematoxylin and eosin (H&E). 

http://komentissuebank.iu.edu/
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Of the 2,321 women, we excluded 801 subjects who were missing genotyping data for 

the single nucleotide polymorphisms (SNPs) of interest, previously diagnosed with cancer 

(n=177), pregnant (n=21), non-white (n=555) or currently taking hormone therapy (n=95). 

Repeated samples from the same donors were excluded (n=124) and one subject with 

uninterpretable tissue morphology was also excluded. The final analytic population was 548 

women. All KTB data were collected with the approval of the Indiana University Institutional 

Review Board (IRB) and the National Institutes of Health Office of Human Subjects Research 

(NIH OHSR #4508). 

The Breast Radiology Evaluation and Study of Tissues (BREAST) Stamp Project 

Women diagnosed with benign breast disease enrolled in the BREAST Stamp Project, a 

cross-sectional molecular epidemiologic study of mammographic density, were also included in 

the study population31. A total of 465 women, 40-65 years of age, were clinically referred to 

undergo image-guided breast biopsy following an abnormal breast imaging exam at the 

University of Vermont College of Medicine and its affiliated academic medical center, the UVM 

Medical Center (formerly Fletcher Allen Health Care (FAHC)), and were enrolled from 2007 

through 2010. Women who were diagnosed with in situ or invasive breast cancer (n=78), missing 

SNP (n=3) or tissue morphology data (n=14), non-white (n=23), and/or currently taking hormone 

therapy (n=23) were excluded, leaving an analytic population of 324 BREAST Stamp 

participants in our analytic population.  

Demographic and breast cancer risk factor information were collected via a self-

administered questionnaire and a supplementary telephone interview. Participants underwent 
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clinically-indicated ultrasound-guided (14-gauge needle) or vacuum-assisted (9-gauge needle) 

breast biopsies, which were processed as formalin-fixed paraffin-embedded blocks, sectioned at 

5 microns, and H&E stained. 

Digital raw mammographic images were transferred to the University of California at San 

Francisco for quantitative density assessment29, 31. Area measures of density were estimated 

using computer-assisted thresholding software. One trained experienced reader measured 

absolute dense area (cm2) by setting a pixel threshold for dense tissue. Nondense area was 

defined as the difference between the total breast area and the dense area. The percentage of 

dense area was calculated by dividing absolute dense breast area by total breast area (i.e., 

absolute dense area + absolute nondense area) and multiplying by 100. Participants provided 

written informed consent and the study was approved by the IRBs at the University of Vermont 

and the NCI. 

KTB sample collection and DNA extraction  

 Details of the KTB samples collection are described in (http://komentissuebank.iu.edu/wp-

content/uploads/downloads/2012/10/SOP-002V3.0-Acquisition-of-Whole-Blood.pdf).  Briefly, 

whole blood samples were collected using Vacuette ® EDTA tubes. DNA was extracted from 

blood cells at the Indiana CTSI Specimen Storage Facility (ICTSI-SSF) lab using an 

AutogenFlex Star (SN 401033) instrument and the Flexigene AGF3000 blood kit for DNA 

extractions from whole blood specimens following manufacturer’s specifications.  For this study, 

a 50 µl aliquot of sample was stored using Biomatrica® DNAstable® Handbook. Samples were 

reconstituted at the Cancer Genomics Research laboratory (Leidos Biomedical Research, Inc., 

Frederick, MD) for genotyping. 

http://komentissuebank.iu.edu/wp-content/uploads/downloads/2012/10/SOP-002V3.0-Acquisition-of-Whole-Blood.pdf
http://komentissuebank.iu.edu/wp-content/uploads/downloads/2012/10/SOP-002V3.0-Acquisition-of-Whole-Blood.pdf
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BREAST Stamp sample collection and DNA extraction  

Whole blood samples were collected pre-biopsy, allowed to clot for 30 minutes and 

processed at the University of Vermont General Clinical Research Center using standard 

techniques. Mouthwash samples were collected as previously described32. Blood samples were 

centrifuged at 3,000 rpm for 15 minutes, and the serum and clot fractions were frozen at -80ºC.  

Mouthwash samples were centrifuged at 1500 x g for 15 minutes and buccal cell pellet was re-

suspended with 3.0 mL TE buffer. The buccal cells were frozen at -80ºC. Frozen samples were 

shipped to SeraCare Life Sciences (Gaithersburg, MD), where they were stored in liquid 

nitrogen. At SeraCare, leukocyte DNA was isolated from blood clots using phenol chloroform 

extraction methods, and DNA was isolated from buccal cells using Puregene methods (Gentra 

Puregene Buccal Cell Kits, Qiagen). DNA was quantified at the Cancer Genomics Research 

Laboratory  with the QuantiFluor® dsDNA System (Promega) according to the manufacturer’s 

instructions.   

Breast cancer susceptibility SNPs and genotyping 

Sixty-two breast cancer susceptibility SNPs reported in GWAS identified as of 2013 and 

for which Taqman assays were available and validated were included in this analysis 

(Supplemental Table 1). DNA samples were extracted from buffy coat using the Qiagen method 

according to the manufacturer’s instructions. SNPs were genotyped at the Core Genotyping 

Facility utilizing a Taqman / Fluidigm platform.  

TDLU Involution Assessment 
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Digitized images of sections were used for quantitative measurements of TDLU 

involution as described in detail elsewhere25, 29. Briefly, H&E slides were scanned as digital 

images suitable for web-based viewing, electronic marking of regions of interest, and image 

analysis on Digital Image Hub software (SlidePath/Leica, Dublin, Ireland). The lasso tool in 

Digital Image Hub was used to outline and measure the total tissue area (mm2) on the slides. The 

study pathologist (MES) evaluated the images to measure the number of TDLUs (“TDLU 

count”). TDLU analyzer software26, 33 was used to quantify the acini count per TDLU for up to 

10 TDLUs per woman and the median value was selected as a single summary measure for each 

woman. A high intra-observer agreement (Spearman’s r>0.90) for the TDLU measures was 

previously reported25, 29. 

Statistical Analysis  

Frequencies and percentages were used to describe selected characteristics of the study 

populations. Analyses were conducted using pooled data from the KTB study and BREAST 

Stamp Project. In sensitivity analyses, we also conducted analyses separately by study. 

Poisson regression models with robust variance were used to calculate per-allele relative 

risks (RRs) and 95% confidence intervals (CIs) for the association of TDLU measures (i.e., 

TDLU count and acini count per TDLU) with each breast cancer susceptibility locus. SNPs were 

modeled using additive coding for the number of breast cancer risk alleles (0, 1, 2). To account 

for the tissue area on the slide, an offset variable was included in the model. The Wald test was 

used to assess the linear trend between breast cancer susceptibility SNPs and morphometric 

TDLU measures. We additionally fitted linear regression models to confirm that the associations 

were not driven by model assumptions. Linear regression models were used to estimate the per-
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allele association (β) and 95% CIs with the log-transformed of TDLU count per 100mm2 plus 

one as the outcome, to better approximate the normal distribution, including zero TDLU count. 

Finally, the combination of TDLU count and acini count per TDLU, modeled as the product of 

the two variables, was also considered in the above described models. 

All multivariable models were adjusted for study population (KTB or BREAST Stamp 

Project) and age (in categories: <30; 30-39; 40-49; 50-59; ≥60). Interactions between SNPs and 

other factors (e.g., menopausal status) were assessed by adding a multiplicative term in the 

regression model. A woman was considered postmenopausal if menstrual periods had stopped 

more than 12 months prior to interview, she had undergone a bilateral oophorectomy, or she had 

undergone a hysterectomy (or gynecologic surgery associated with cessation of menses) and was 

55 years of age or older; otherwise, a woman was considered premenopausal. Associations 

between SNPs and MD measures were estimated for women in the BREAST Stamp Project for 

whom MD measures were available29, 31 using linear regression models and the square root of the 

density measure as outcome. 

All statistical tests were two-sided and P-values < 0.05 were considered statistically 

significant. Because SNPs examined in this analysis are well-established breast cancer 

susceptibility loci, we used a threshold of P<0.05 to define significant associations. Since our 

power to test for individual associations was limited, we also tested for enrichment of 

associations between SNPs and measures of TDLU involution34. We did this using binomial tests 

in two ways: (1) comparing the proportion of the SNP associations (regardless of statistical 

significance) in the direction consistent with our expectation (RR>1.0) based on the relationship 

of the SNPs with breast cancer to 50%, which is what would have been expected by chance; and 
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(2) comparing the proportion of SNPs with significant associations to 5%, which is expected by 

chance alone. We also present individual associations between SNPs and TDLU involution 

measures. All analyses were conducted in the R software environment (version 3.1.1). 

Results 

A total of 872 women were included in this analysis, 548 (63%) from the KTB and 324 

(37%) from the BREAST Stamp Project. Characteristics of the women are shown in Table 1. 

Women in both studies tended to be premenopausal (71.7% in KTB; 61.4% in BREAST Stamp) 

and enriched for family history of breast cancer compared with the general population (23.2% in 

KTB; 24.8% in BREAST Stamp). Measures of TDLU involution, including TDLU count, and 

acini count per TDLU were similar in both populations. After accounting for age, none of the 

TDLU involution measures were statistically significantly different between the two populations. 

Of the 62 known independent breast cancer susceptibility loci evaluated in this study, 36 

(58.1%) were found to be associated with higher TDLU count in the Poisson model (RR>1.0), 

albeit the vast majority of associations with the individual loci were not statistically significant 

(Supplemental Table 1). Furthermore, statistical evidence of enrichment was not observed 

(58.1% vs 50%, P=0.25). While the direction of the estimates was generally consistent across the 

Poisson and linear models, when the linear model was used 40 SNPs (64.5%) were found to be 

associated with higher TDLU count, which is higher than what would have been expected by 

chance alone (64.5% vs 50%, P=0.031), suggesting an enrichment of associations with TDLU 

counts. Under the Poisson model, the top three SNPs associated with TDLU count were 

rs616488 (PEX14), rs11242675 (FOXQ1) and rs6001930 (MKL1), which were associated with 
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higher TDLU count (P=0.047, 0.045 and 0.031, respectively; Table 2), in directions consistent 

with their associations with breast cancer risk. None of the above associations showed significant 

heterogeneity by study (Supplemental Table 2). 

Two breast cancer susceptibility SNPs were significantly associated with higher acini 

count per TDLU (Table 2; Supplemental Table 3): rs1353747 (PDE4D) (P=0.007) and 

rs6472903 (8q21.11) (P=0.027). To account for the overall epithelial content in the slide, we 

studied the relationship between SNPs and the combination of TDLU count and acini count per 

TDLU, which were modeled as the product of these two TDLU measures (Table 2; 

Supplemental Table 4). Two SNPs were associated with the product of TDLU and acini counts: 

rs1353747 (PDE4D) was associated with higher epithelial content (P=0.024) and rs204247 

(RANBP9) was associated with lower epithelial content (P=0.017). 

Five SNPs were statistically significantly associated with TDLU count in premenopausal 

women (rs616488 (PEX14), rs6828523 (ADAM29), rs11242675 (FOXQ1), rs3817198 (LSP1) 

and rs6001930 (MKL1)) (Table 3), and two were significantly associated with TDLU count in 

postmenopausal women (rs1011970 (CDKN2A/B) and rs1292011 (TBX3)). Four SNPs, 

rs6678914 (LGR6), rs6828523 (ADAM29), rs1011970 (CDKN2A/B) and rs11199914 (10q26.12), 

showed statistically significant heterogeneity in their association with TDLU count by 

menopausal status (P-values: 0.027, 0.036, 0.032 and 0.037, respectively; Table3). 

Finally, we examined the association between breast cancer SNPs and MD measures, 

restricted to women in the BREAST Stamp Project for whom MD measures were available 

(Supplemental Table 5).  Although some SNPs were suggestively associated with MD, none of 
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the SNPs associated with TDLU measures was significantly associated with any of the MD 

measures analyzed. 

Discussion 

In this first study evaluating the association between established genetic variants 

associated with breast cancer risk and TDLU involution, we found six SNPs (9.7%) to be 

nominally associated with at least one standardized TDLU measure using data from two studies 

with benign tissues, the KTB and the BREAST Stamp Project. Of the six SNPs, TDLU 

associations for five were in the same direction as their relationship with breast cancer risk. 

However, there was no evidence for statistical enrichment by either of the two definitions used in 

our analysis, although this may be due to the small samples size. This suggests that the breast 

cancer loci included in this analysis do not strongly influence TDLU involution. Future genome-

wide association analysis may help to elucidate the biologic underpinnings of TDLU involution 

and its relationship with breast cancer risk. 

Three variants were nominally associated with TDLU count. The risk allele of rs6001930 

(MKL1), which we found to be associated with higher TDLU count, had been previously 

associated with increased risk of both estrogen receptor (ER)-positive and ER-negative breast 

cancers21. In addition, rs6001930 (MKL1) has also been significantly associated with MD35, 36, a 

strong breast cancer risk factor37. However, the direction of the association of rs6001930 (MKL1) 

with MD was not consistent with its associations with breast cancer risk: in a large pooled 

analysis, rs6001930 (MKL1) was associated with lower measures of MD, including absolute 

dense area and nondense area36. Among women in our analysis for whom MD measures were 
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available, we also found rs6001930 (MKL1) to be inversely associated with absolute dense and 

non-dense areas.  These divergent directions of association are consistent with analyses showing 

lower levels of TDLU involution and higher MD to be independent risk factors for breast cancer 

development37. Our findings suggest that the association between this SNP and breast cancer risk 

may be in part due to its influence on higher epithelial cell content and lower levels of TDLU 

involution, rather than mediated through higher levels of MD, which is thought to predominantly 

reflect stromal tissue38. This result highlights the importance of conducting genetic analysis in 

relation to both histologic and radiologic measures of breast tissue composition in order to better 

understand the role of these intermediate endpoints in breast carcinogenesis. 

The other two variants associated with TDLU count have been differentially associated 

with ER-positive and ER-negative breast cancers20, 21.  SNP rs616488 (PEX14) has been found to 

be associated with overall21 and ER-negative breast cancer specifically39. This SNP has been 

found to be more strongly associated with PEX14 expression in tumor tissues compared to 

normal tissues21. Our finding that rs616488 (PEX14) is associated with higher TDLU count may 

indicate that the association of this SNP with breast cancer risk may be in part mediated through 

TDLU involution. We explored the interaction between SNPs and menopausal status and found 

that several SNPs had different associations with TDLU count for pre- and post-menopausal 

women. In particular, rs616488 (PEX14) variant was associated with increased TDLU count only 

in pre-menopausal women and has previously been associated with triple-negative breast cancer, 

which is more common in younger women. If replicated, future studies should further examine 

whether the association of PEX14 with breast cancer risk may be due in part to an influence of 

involution levels in younger women.  
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The SNP rs11242675 (FOXQ1) has been previously found to be associated with both ER-

positive and ER-negative breast cancers21, and FOXQ1 has been related to tumor 

aggressiveness40. Consistent with this relationship, we noted that the association with higher 

TDLU count was only observed among premenopausal women, who tend to be diagnosed with 

more aggressive breast cancers, suggesting a biologically plausible relationship with TDLU 

involution. In contrast, the rs6828523 (ADAM29) variant, which was previously found to 

increase risk of ER-positive breast cancer, was also associated with higher TDLU count. The 

ADAM family of proteins has been associated with cell proliferation and invasion41. 

We found SNP rs1353747 (PDE4D) was significantly associated with both higher acini 

count per TDLU and overall higher epithelial content, but not with TDLU count alone. While the 

reasons for this are unclear, TDLU involution is thought to be a sequential process, with initial 

disappearance of acini and reduction of TDLU size, followed by the disappearance of TDLUs. 

Therefore, different genetic variants may be involved in different aspects of this complex 

process. 

The biologic mechanisms that are associated with TDLU involution remain poorly 

understood. Animal models and in vitro studies suggest the involvement of insulin-like growth 

factors (IGFs) and their binding proteins in mammary gland development and involution 42, 43. 

Recent data also suggest that higher levels of circulating IGFs are related to decreased lobular 

involution44. Fine mapping data of the 2q35 susceptibility locus suggest that breast cancer risk 

may be mediated through regulation of the IGF binding protein 5 (IGFBP5)45, but whether 

IGFBP5 plays a specific role in modulating TDLU involution in humans is unknown. In our 

analysis, we did not find the variant rs13387042 in 2q35 to be significantly associated with 
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measures of TDLU involution, although a positive relationship was observed. Interestingly, we 

also saw positive, significant associations of rs13387042 with both percent density and dense 

area measures (Supplemental Table 5), which was not observed in a recent pooled analysis of 

mammographic density36. The reasons for these contrary results with density compared to 

involution measures are unclear. It is possible that this SNP is not associated with involution or 

we did not have enough power to detect an association with involution measures, as rs13387042 

is only associated with a 12% decreased breast cancer risk45. Alternatively, this SNP may 

influence breast cancer risk through other mechanisms such as stromal-epithelial signaling. 

Future research is needed to clarify whether the IGF family members beyond IGF1 and IGFBP3 

influence breast tissue composition in humans. 

The strengths of this study are the use of well-characterized data of non-malignant tissues 

and standardized, reproducible measures of lobular involution. While additional studies were not 

available for replication, we found that the reported associations were similar in the two study 

populations included in this analysis and generally in the same direction as the SNP-breast 

cancer risk association. One of the major limitations of our study was the sample size, which 

may have precluded us from observing additional significant associations and none of the 

associations remained significant after Bonferroni correction for multiple testing. Sample size 

calculations indicated that double the sample size would be needed to observed significant 

associations at the 5% alpha level with 80% power. Another limitation was the differences 

between the KTB and the BREAST Stamp project. While the former consisted of volunteers for 

whom collection of tissue samples did not specifically target areas of the breast enriched by 

epithelial cells, the latter population consisted of women undergoing diagnostic image-guided 
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breast biopsies that were likely enriched for TDLUs. However, associations were in the same 

direction in both studies and did not differ significantly for the reported SNPs, which gives 

confidence in the robustness of the results. For our sensitivity analysis, we evaluated these 

associations using two different models, each one with different underlying statistical 

assumptions, to further confirm that the reported associations were not driven by statistical 

properties of the models. We found that the majority of associations, including those reported, 

were in the same direction regardless of the model used, although the statistical significance 

varied by the underlying assumptions of the model. Future research should explore under which 

circumstances each model may be better suited. 

In conclusion, we observed six of 62 breast cancer susceptibility loci nominally 

associated with TDLU involution, with limited evidence of statistical enrichment. Future 

approaches with larger sample sizes may provide further insights into the genetics of TDLU 

involution and its role in breast cancer etiology. 



19 

 

Acknowledgement 

This study was supported by the Intramural Research Program of the Division of Cancer 

Epidemiology and Genetics of the US National Cancer Institute.  Breast Cancer Research Stamp 

Funds (awarded to M.E. Sherman and L.A. Brinton) and cooperative agreement U01CA70013 

(B.M. Geller, P.M. Vacek, D.L. Weaver, R.E. Chicoine) from the National Cancer Institute 

funded some of the data collection for this study.  The content of this publication does not 

necessarily reflect the views or policies of the Department of Health and Human Services, nor 

does mention of trade names, commercial products, or organizations imply endorsement by the 

U.S. Government. 



20 

 

References 

 1. Russo J, Hu YF, Yang X, Russo IH. Developmental, cellular, and molecular basis of 

human breast cancer. Journal of the National Cancer Institute Monographs 2000: 17-37. 

 2. Milanese TR, Hartmann LC, Sellers TA, Frost MH, Vierkant RA, Maloney SD, 

Pankratz VS, Degnim AC, Vachon CM, Reynolds CA, Thompson RA, Melton LJ, 3rd, et al. 

Age-related lobular involution and risk of breast cancer. J Natl Cancer Inst 2006;98: 1600-7. 

 3. Baer HJ, Collins LC, Connolly JL, Colditz GA, Schnitt SJ, Tamimi RM. Lobule type 

and subsequent breast cancer risk: results from the Nurses' Health Studies. Cancer 2009;115: 

1404-11. 

 4. Cox A, Dunning AM, Garcia-Closas M, Balasubramanian S, Reed MWR, Pooley KA, 

Scollen S, Baynes C, Ponder BAJ, Chanock S, Lissowska J, Brinton L, et al. A common coding 

variant in CASP8 is associated with breast cancer risk. Nat Genet 2007;39: 352-8. 

 5. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, 

Struewing JP, Morrison J, Field H, Luben R, Wareham N, Ahmed S, et al. Genome-wide 

association study identifies novel breast cancer susceptibility loci. Nature 2007;447: 1087-93. 

 6. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, 

Wang Z, Welch R, Hutchinson A, Wang J, Yu K, et al. A genome-wide association study 

identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat 

Genet 2007;39: 870-4. 

 7. Stacey SN, Manolescu A, Sulem P, Rafnar T, Gudmundsson J, Gudjonsson SA, 

Masson G, Jakobsdottir M, Thorlacius S, Helgason A, Aben KK, Strobbe LJ, et al. Common 

variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive 

breast cancer. Nat Genet 2007;39: 865-9. 



21 

 

 8. Stacey SN, Manolescu A, Sulem P, Thorlacius S, Gudjonsson SA, Jonsson GF, 

Jakobsdottir M, Bergthorsson JT, Gudmundsson J, Aben KK, Strobbe LJ, Swinkels DW, et al. 

Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast 

cancer. Nat Genet 2008;40: 703-6. 

 9. Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R, Morrison 

J, Maranian M, Pooley KA, Luben R, Eccles D, Evans DG, et al. Newly discovered breast cancer 

susceptibility loci on 3p24 and 17q23.2. Nat Genet 2009;41: 585-90. 

 10. Thomas G, Jacobs KB, Kraft P, Yeager M, Wacholder S, Cox DG, Hankinson SE, 

Hutchinson A, Wang Z, Yu K, Chatterjee N, Garcia-Closas M, et al. A multistage genome-wide 

association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 

(RAD51L1). Nat Genet 2009;41: 579-84. 

 11. Zheng W, Long J, Gao Y-T, Li C, Zheng Y, Xiang Y-B, Wen W, Levy S, Deming 

SL, Haines JL, Gu K, Fair AM, et al. Genome-wide association study identifies a new breast 

cancer susceptibility locus at 6q25.1. Nat Genet 2009;41: 324-8. 

 12. Antoniou AC, Wang X, Fredericksen ZS, McGuffog L, Tarrell R, Sinilnikova OM, 

Healey S, Morrison J, Kartsonaki C, Lesnick T, Ghoussaini M, Barrowdale D, et al. A locus on 

19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone 

receptor-negative breast cancer in the general population. Nat Genet 2010;42: 885-92. 

 13. Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M, Seal S, 

Ghoussaini M, Hines S, Healey CS, Hughes D, Warren-Perry M, et al. Genome-wide association 

study identifies five new breast cancer susceptibility loci. Nat Genet 2010;42: 504-7. 

 14. Fletcher O, Johnson N, Orr N, Hosking FJ, Gibson LJ, Walker K, Zelenika D, Gut I, 

Heath S, Palles C, Coupland B, Broderick P, et al. Novel Breast Cancer Susceptibility Locus at 



22 

 

9q31.2: Results of a Genome-Wide Association Study. Journal of the National Cancer Institute 

2011;103: 425-35. 

 15. Haiman CA, Chen GK, Vachon CM, Canzian F, Dunning A, Millikan RC, Wang X, 

Ademuyiwa F, Ahmed S, Ambrosone CB, Baglietto L, Balleine R, et al. A common variant at 

the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. Nat 

Genet 2011;43: 1210-4. 

 16. Ghoussaini M, Fletcher O, Michailidou K, Turnbull C, Schmidt MK, Dicks E, Dennis 

J, Wang Q, Humphreys MK, Luccarini C, Baynes C, Conroy D, et al. Genome-wide association 

analysis identifies three new breast cancer susceptibility loci. Nat Genet 2012;44: 312-8. 

 17. Siddiq A, Couch FJ, Chen GK, Lindström S, Eccles D, Millikan RC, Michailidou K, 

Stram DO, Beckmann L, Rhie SK, Ambrosone CB, Aittomäki K, et al. A meta-analysis of 

genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 

and 20q11. Human Molecular Genetics 2012;21: 5373-84. 

 18. Bojesen SE, Pooley KA, Johnatty SE, Beesley J, Michailidou K, Tyrer JP, Edwards 

SL, Pickett HA, Shen HC, Smart CE, Hillman KM, Mai PL, et al. Multiple independent variants 

at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat 

Genet 2013;45: 371-84. 

 19. French Juliet D, Ghoussaini M, Edwards Stacey L, Meyer Kerstin B, Michailidou K, 

Ahmed S, Khan S, Maranian Mel J, O’Reilly M, Hillman Kristine M, Betts Joshua A, Carroll T, 

et al. Functional Variants at the 11q13 Risk Locus for Breast Cancer Regulate Cyclin D1 

Expression through Long-Range Enhancers. The American Journal of Human Genetics 2013;92: 

489-503. 



23 

 

 20. Garcia-Closas M, Couch FJ, Lindstrom S, Michailidou K, Schmidt MK, Brook MN, 

Orr N, Rhie SK, Riboli E, Feigelson HS, Le Marchand L, Buring JE, et al. Genome-wide 

association studies identify four ER negative-specific breast cancer risk loci. Nat Genet 2013;45: 

392-8. 

 21. Michailidou K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL, 

Schmidt MK, Chang-Claude J, Bojesen SE, Bolla MK, Wang Q, Dicks E, et al. Large-scale 

genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 2013;45: 353-61. 

 22. Lambrechts D, Truong T, Justenhoven C, Humphreys MK, Wang J, Hopper JL, Dite 

GS, Apicella C, Southey MC, Schmidt MK, Broeks A, Cornelissen S, et al. 11q13 is a 

susceptibility locus for hormone receptor positive breast cancer. Human Mutation 2012;33: 

1123-32. 

 23. Stevens KN, Fredericksen Z, Vachon CM, Wang X, Margolin S, Lindblom A, 

Nevanlinna H, Greco D, Aittomäki K, Blomqvist C, Chang-Claude J, Vrieling A, et al. 19p13.1 

Is a Triple-Negative–Specific Breast Cancer Susceptibility Locus. Cancer Research 2012;72: 

1795-803. 

 24. Figueroa JD, Garcia-Closas M, Humphreys M, Platte R, Hopper JL, Southey MC, 

Apicella C, Hammet F, Schmidt MK, Broeks A, Tollenaar RAEM, Van't Veer LJ, et al. 

Associations of common variants at 1p11.2 and 14q24.1 (RAD51L1) with breast cancer risk and 

heterogeneity by tumor subtype: findings from the Breast Cancer Association Consortium. 

Human Molecular Genetics 2011;20: 4693-706. 

 25. Figueroa JD, Pfeiffer RM, Patel DA, Linville L, Brinton LA, Gierach GL, Yang XR, 

Papathomas D, Visscher D, Mies C, Degnim AC, Anderson WF, et al. Terminal duct lobular unit 



24 

 

involution of the normal breast: implications for breast cancer etiology. J Natl Cancer Inst 

2014;106. 

 26. Khodr ZG, Sherman ME, Pfeiffer RM, Gierach GL, Brinton LA, Falk RT, Patel DA, 

Linville LM, Papathomas D, Clare SE, Visscher DW, Mies C, et al. Circulating sex hormones 

and terminal duct lobular unit involution of the normal breast. Cancer Epidemiol Biomarkers 

Prev 2014;23: 2765-73. 

 27. Horne HN, Sherman ME, Pfeiffer RM, Figueroa JD, Khodr ZG, Falk RT, Pollak M, 

Patel DA, Palakal MM, Linville L, Papathomas D, Geller B, et al. Circulating insulin-like growth 

factor-I, insulin-like growth factor binding protein-3 and terminal duct lobular unit involution of 

the breast: a cross-sectional study of women with benign breast disease. Breast cancer research : 

BCR 2016;18: 24. 

 28. Oh H, Khodr ZG, Sherman ME, Palakal M, Pfeiffer RM, Linville L, Geller BM, 

Vacek PM, Weaver DL, Chicoine RE, Falk RT, Horne HN, et al. Relation of serum estrogen 

metabolites with terminal duct lobular unit involution among women undergoing diagnostic 

image-guided breast biopsy. Submitted 2016. 

 29. Gierach GL, Patel DA, Pfeiffer RM, Figueroa JD, Linville L, Papathomas D, Johnson 

JM, Chicoine RE, Herschorn SD, Shepherd JA, Wang J, Malkov S, et al. Relationship of 

Terminal Duct Lobular Unit Involution of the Breast with Area and Volume Mammographic 

Densities. Cancer Prev Res (Phila) 2016;9: 149-58. 

 30. Sherman ME, Figueroa JD, Henry JE, Clare SE, Rufenbarger C, Storniolo AM. The 

Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center: A Unique Resource 

for Defining the “Molecular Histology” of the Breast. Cancer Prevention Research 2012;5: 528-

35. 



25 

 

 31. Gierach GL, Geller BM, Shepherd JA, Patel DA, Vacek PM, Weaver DL, Chicoine 

RE, Pfeiffer RM, Fan B, Mahmoudzadeh AP, Wang J, Johnson JM, et al. Comparison of 

Mammographic Density Assessed as Volumes and Areas among Women Undergoing Diagnostic 

Image-Guided Breast Biopsy. Cancer Epidemiol Biomarkers Prev 2014;23: 2338-48. 

 32. Garcia-Closas M, Egan KM, Abruzzo J, Newcomb PA, Titus-Ernstoff L, Franklin T, 

Bender PK, Beck JC, Le Marchand L, Lum A, Alavanja M, Hayes RB, et al. Collection of 

genomic DNA from adults in epidemiological studies by buccal cytobrush and mouthwash. 

Cancer epidemiology, biomarkers & prevention : a publication of the American Association for 

Cancer Research, cosponsored by the American Society of Preventive Oncology 2001;10: 687-

96. 

 33. Rosebrock A, Caban JJ, Figueroa J, Gierach G, Linville L, Hewitt S, Sherman M. 

Quantitative Analysis of TDLUs using Adaptive Morphological Shape Techniques. Proceedings 

of SPIE 2013;8676: 86760N. 

 34. Oh H, Bodelon C, Palakal M, Chatterjee N, Sherman ME, Linville L, Geller BM, 

Vacek PM, Weaver DL, Chicoine RE, Papathomas D, Patel DA, et al. Ages at menarche- and 

menopause-related genetic variants in relation to terminal duct lobular unit involution in normal 

breast tissue. Breast Cancer Research and Treatment 2016;158: 341-50. 

 35. Lindstrom S, Thompson DJ, Paterson AD, Li J, Gierach GL, Scott C, Stone J, 

Douglas JA, dos-Santos-Silva I, Fernandez-Navarro P, Verghase J, Smith P, et al. Genome-wide 

association study identifies multiple loci associated with both mammographic density and breast 

cancer risk. Nat Commun 2014;5: 5303. 

 36. Stone J, Thompson DJ, Dos Santos Silva I, Scott C, Tamimi RM, Lindstrom S, Kraft 

P, Hazra A, Li J, Eriksson L, Czene K, Hall P, et al. Novel Associations between Common 



26 

 

Breast Cancer Susceptibility Variants and Risk-Predicting Mammographic Density Measures. 

Cancer Res 2015;75: 2457-67. 

 37. Ghosh K, Vachon CM, Pankratz VS, Vierkant RA, Anderson SS, Brandt KR, 

Visscher DW, Reynolds C, Frost MH, Hartmann LC. Independent association of lobular 

involution and mammographic breast density with breast cancer risk. J Natl Cancer Inst 

2010;102: 1716-23. 

 38. Li T, Sun L, Miller N, Nicklee T, Woo J, Hulse-Smith L, Tsao MS, Khokha R, 

Martin L, Boyd N. The association of measured breast tissue characteristics with mammographic 

density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev 2005;14: 

343-9. 

 39. Purrington KS, Slager S, Eccles D, Yannoukakos D, Fasching PA, Miron P, 

Carpenter J, Chang-Claude J, Martin NG, Montgomery GW, Kristensen V, Anton-Culver H, et 

al. Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk 

factors for triple-negative breast cancer. Carcinogenesis 2014;35: 1012-9. 

 40. Zhang H, Meng F, Liu G, Zhang B, Zhu J, Wu F, Ethier SP, Miller F, Wu G. 

Forkhead transcription factor foxq1 promotes epithelial-mesenchymal transition and breast 

cancer metastasis. Cancer Res 2011;71: 1292-301. 

 41. Mochizuki S, Okada Y. ADAMs in cancer cell proliferation and progression. Cancer 

science 2007;98: 621-8. 

 42. Ning Y, Hoang B, Schuller AG, Cominski TP, Hsu MS, Wood TL, Pintar JE. 

Delayed mammary gland involution in mice with mutation of the insulin-like growth factor 

binding protein 5 gene. Endocrinology 2007;148: 2138-47. 



27 

 

 43. Sureshbabu A, Tonner E, Flint DJ. Insulin-like growth factor binding proteins and 

mammary gland development. Int J Dev Biol 2011;55: 781-9. 

 44. Horne HN, Sherman ME, Pfeiffer RM, Figueroa JD, Khodr ZG, Falk RT, Pollak M, 

Patel DA, Palakal MM, Linville L, Papathomas D, Geller B, et al. Circulating insulin-like growth 

factor-I, insulin-like growth factor binding protein-3 and terminal duct lobular unit involution of 

the breast: a cross-sectional study of women with benign breast disease. Breast Cancer Research 

2016;18: 1-12. 

 45. Ghoussaini M, Edwards SL, Michailidou K, Nord S, Cowper-Sal·lari R, Desai K, Kar 

S, Hillman KM, Kaufmann S, Glubb DM, Beesley J, Dennis J, et al. Evidence that breast cancer 

risk at the 2q35 locus is mediated through IGFBP5 regulation. Nat Commun 2014;4. 

 



Clara Bodelon – 3/25/2016 

Table 1. Selected characteristics of women in the Komen Tissue Bank and BREAST Stamp Project. 

Characteristics Komen Tissue Bank 
(N=548) 

BREAST Stamp Project 
(N=324) 

Age (years), n (%)    
< 30 183 (33.4) 0 
30 to 39 102 (18.6) 0 
40 to 49 124 (22.6) 161 (49.7) 
50 to 59 86 (15.7) 124 (38.3) 
≥ 60 53  ( 9.7)   39  (12.0) 

Menopausal Status, n (%)   
Premenopausal 393 (71.7) 199 (61.4) 
Postmenopausal 155 (28.3) 125 (38.6) 

Parity, n (%)   
   Nulliparous 268 (48.9)   82 (25.3) 
   Parous 280 (51.1) 242 (74.7) 
Family history of breast cancer, n (%)   

No 421 (76.8) 240 (75.2) 
Yes 127 (23.2)   79 (24.8) 

TDLUs observed, n (%)   
    No 170 (31.0)   87 (26.9) 
    Yes 378 (69.0) 237 (73.1) 
Involution measures, median (IQR)   
    TDLU counts per 100mm2 22.9 (9.8 – 51.5) 18.0 (6.4 – 38.0) 
    Median acini count per TDLU 13.0 (7.5 – 2.5)   11 (7.0 – 16.5) 
    (TDLU counts)* (acini count per TDLU) 287.5 (93.9 – 835.8) 189.7 (48.5 – 477.1) 

TDLU: Terminal duct lobular units; IQR: Interquartile range. 
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Table 2. Associations between breast cancer susceptibility loci and measures of TDLU involution with statistically significant 
associations (P<0.05) among women in the Komen Tissue Bank and BREAST Stamp Project. 
 

SNP Chr Locus 
TDLU counts  Acini count per TDLU  (TDLU counts)* (acini count per 

TDLU) 
RR* (95% CI)* P-trend*  RR* (95% CI)* P-trend*  RR* (95% CI)* P-trend* 

rs616488 1 PEX14 1.16 (1.00,1.35) 0.047  1.08 (0.95,1.22) 0.239  1.07 (0.86,1.33) 0.550 
rs1353747 5 PDE4D 1.00 (0.80,1.25) 0.981  1.28 (1.07,1.54) 0.007  1.40 (1.05,1.88) 0.024 
rs11242675 6 FOXQ1 1.13 (1.00,1.28) 0.045  1.10 (0.98,1.23) 0.108  1.15 (0.97,1.37) 0.102 
rs204247 6 RANBP9 0.93 (0.82,1.05) 0.259  0.92 (0.82,1.03) 0.144  0.81 (0.67,0.96) 0.017 
rs6472903 8 8q21.11 1.06 (0.87,1.29) 0.563  1.18 (1.02,1.36) 0.027  1.08 (0.85,1.38) 0.515 
rs6001930 22 MKL1 1.24 (1.02,1.50) 0.031  1.10 (0.92,1.33) 0.292  1.30 (0.99,1.72) 0.058 

TDLU: Terminal duct lobular unit; SNP: Single nucleotide polymorphism; Chr: Chromosome; RR: Risk ratio; CI: Confidence 
interval; TDLU: Terminal duct lobular unit. 
*Based on a multivariable Poisson regression model with robust variance adjusted for study and age (in categories: <30, 30-39, 40-49, 
50-59, ≥60) and an offset variable accounting for the tissue area on the slide (in log scale).  SNPs were modeled using additive coding 
for the number of breast cancer risk alleles (0, 1, 2). 
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Table 3. Associations between breast cancer susceptibility loci and TDLU counts by menopausal status (SNPs 
with P<0.05) among women in the Komen Tissue Bank and BREAST Stamp Project. 

SNP Chr Locus 
Premenopausal*  Postmenopausal* 

P-heterogeneity** 

RR 95% CI P-trend  RR 95% CI P-trend 

rs616488 1 PEX14 1.19 (1.01,1.41) 0.040  1.10 (0.81,1.50) 0.548 0.617 
rs6678914 1 LGR6 0.87 (0.75,1.02) 0.094  1.28 (0.95,1.71) 0.101 0.027 
rs6828523 4 ADAM29 1.33 (1.07,1.66) 0.011  0.74 (0.45,1.22) 0.236 0.036 
rs11242675 6 FOXQ1 1.18 (1.03,1.35) 0.020  1.05 (0.79,1.38) 0.749 0.363 
rs1011970 9 CDKN2A/B 0.94 (0.75,1.18) 0.617  1.43 (1.03,1.98) 0.031 0.032 
rs11199914 10 10q26.12 1.04 (0.89,1.21) 0.633  0.71 (0.52,0.98) 0.036 0.037 
rs3817198 11 LSP1 0.83 (0.71,0.97) 0.022  1.08 (0.76,1.52) 0.669 0.165 
rs1292011 12 TBX3 0.93 (0.80,1.09) 0.381  0.74 (0.55,0.99) 0.044 0.164 
rs6001930 22 MKL1 1.32 (1.08,1.61) 0.006  0.93 (0.53,1.63) 0.808 0.267 

TDLU: Terminal duct lobular unit; SNP: Single nucleotide polymorphism; Chr: Chromosome; RR: Risk ratio; 
CI: Confidence interval; TDLU: Terminal duct lobular unit. 
*Based on a multivariable Poisson regression model with robust variance adjusted for study and age (in 
categories: <30, 30-39, 40-49, 50-59, ≥60) and an offset variable accounting for the tissue area on the slide (in 
log scale). SNPs were modeled using additive coding for the number of breast cancer risk alleles (0, 1, 2). 
**P-heterogeneity was computed as the P-value associated with the interaction term between menopause and the 
corresponding SNP. 
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Supplemental Table 1. Associations between breast cancer susceptibility loci and TDLU counts among women in the Komen Tissue Bank and 
BREAST Stamp Project. 

SNP Chr Locus BC non-
risk allele¶ 

BC risk 
allele¶ 

Freq. BC 
risk allele¶ 

Poisson regression*  Linear regression** 

RR 95% CI P-trend  Geometric 
mean 95% CI P-trend 

rs616488 1 PEX14 G A 0.70 1.16 (1,1.35) 0.047  1.13 (0.95,1.34) 0.166 
rs11249433 1 1p11.2 A G 0.42 0.98 (0.85,1.14) 0.815  1.06 (0.9,1.25) 0.462 
rs6678914 1 LGR6 A G 0.60 0.96 (0.84,1.11) 0.607  0.99 (0.84,1.16) 0.891 
rs4245739 1 MDM4 A C 0.26 1.04 (0.9,1.2) 0.589  1.05 (0.88,1.25) 0.586 
rs12710696 2 2p24.1 G A 0.38 0.95 (0.83,1.09) 0.469  1.02 (0.87,1.19) 0.849 
rs4849887 2 2q14.2 A G 0.89 1.00 (0.79,1.27) 0.970  1.17 (0.92,1.5) 0.204 
rs1550623 2 CDCA7 G A 0.84 0.94 (0.8,1.11) 0.462  0.85 (0.69,1.05) 0.134 
rs1045485 2 CASP8 C G 0.89 0.90 (0.74,1.1) 0.296  1.05 (0.82,1.33) 0.721 
rs13387042 2 2q35 C T 0.52 1.05 (0.93,1.19) 0.435  1.06 (0.91,1.23) 0.488 
rs16857609 2 DIRC3 G A 0.26 1.01 (0.86,1.19) 0.871  0.96 (0.81,1.14) 0.641 
rs6762644 3 ITPR1 A G 0.41 0.96 (0.83,1.12) 0.627  0.91 (0.77,1.07) 0.238 
rs4973768 3 SLC4A7 G A 0.47 0.93 (0.81,1.06) 0.267  0.98 (0.84,1.15) 0.825 
rs12493607 3 TGFBR2 G C 0.33 1.04 (0.9,1.19) 0.611  1.10 (0.93,1.3) 0.249 
rs9790517 4 TET2 C T 0.24 1.01 (0.86,1.18) 0.889  1.01 (0.85,1.21) 0.884 
rs6828523 4 ADAM29 A C 0.88 1.16 (0.95,1.42) 0.145  1.10 (0.87,1.4) 0.428 
rs10069690 5 TERT G A 0.28 1.12 (0.96,1.3) 0.160  1.12 (0.94,1.34) 0.193 
rs2736108 5 TERT A G 0.70 1.02 (0.89,1.19) 0.742  1.00 (0.85,1.19) 0.957 
rs10941679 5 MRPS30 A G 0.25 0.92 (0.79,1.07) 0.278  0.85 (0.71,1.01) 0.071 
rs889312 5 MAP3K1 A C 0.29 0.92 (0.8,1.06) 0.257  1.03 (0.87,1.23) 0.725 
rs1353747 5 PDE4D C A 0.91 1.00 (0.8,1.25) 0.981  0.98 (0.76,1.28) 0.900 
rs1432679 5 EBF1 A G 0.43 0.93 (0.82,1.05) 0.226  1.02 (0.88,1.19) 0.761 
rs11242675 6 FOXQ1 C T 0.62 1.13 (1.00,1.28) 0.045  1.10 (0.95,1.29) 0.211 
rs204247 6 RANBP9 T C 0.45 0.93 (0.82,1.05) 0.259  0.93 (0.8,1.08) 0.330 
rs17529111 6 6q14.1 A G 0.20 0.93 (0.79,1.09) 0.358  1.00 (0.82,1.22) 0.980 
rs3757318 6 CCDC170 G A 0.08 1.07 (0.85,1.36) 0.560  1.10 (0.83,1.46) 0.508 
rs2046210 6 ESR1 G A 0.55 1.05 (0.92,1.19) 0.467  1.08 (0.93,1.25) 0.316 
rs720475 7 ARHGEF5 A G 0.75 1.05 (0.91,1.21) 0.512  1.05 (0.88,1.25) 0.611 
rs9693444 8 8p21.1 C A 0.33 1.01 (0.87,1.18) 0.866  1.00 (0.85,1.19) 0.966 
rs6472903 8 8q21.11 G T 0.82 1.06 (0.87,1.29) 0.563  1.25 (1.02,1.53) 0.028 
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SNP Chr Locus BC non-
risk allele¶ 

BC risk 
allele¶ 

Freq. BC 
risk allele¶ 

Poisson regression*  Linear regression** 

RR 95% CI P-trend  Geometric 
mean 95% CI P-trend 

rs13281615 8 8q24 A G 0.43 1.06 (0.92,1.22) 0.407  1.06 (0.91,1.24) 0.456 
rs11780156 8 MIR1208 C T 0.16 1.01 (0.85,1.19) 0.934  1.01 (0.82,1.25) 0.917 
rs1011970 9 CDKN2A/B C A 0.16 1.06 (0.88,1.28) 0.536  1.08 (0.86,1.35) 0.508 
rs2380205 10 ANKRD16 A G 0.56 1.03 (0.9,1.19) 0.662  0.99 (0.85,1.16) 0.939 
rs11814448 10 DNAJC1 T G 0.02 1.40 (0.97,2.02) 0.071  1.60 (0.88,2.93) 0.125 
rs10995190 10 ZNF365 A G 0.87 0.89 (0.74,1.06) 0.199  0.92 (0.74,1.16) 0.492 
rs704010 10 ZMIZ1 C T 0.40 1.01 (0.89,1.14) 0.906  1.01 (0.87,1.18) 0.858 
rs11199914 10 10q26.12 A G 0.68 0.96 (0.83,1.11) 0.580  1.01 (0.86,1.19) 0.906 
rs3817198 11 LSP1 T C 0.32 0.89 (0.77,1.03) 0.121  0.87 (0.74,1.03) 0.108 
rs3903072 11 SNX32 T G 0.54 0.94 (0.83,1.06) 0.311  1.01 (0.87,1.17) 0.915 
rs614367 11 CCND1 G A 0.17 1.05 (0.88,1.24) 0.611  1.12 (0.93,1.35) 0.236 
rs11820646 11 11q24.3 T C 0.58 0.95 (0.83,1.09) 0.452  1.00 (0.86,1.17) 0.982 
rs12422552 12 12p13.1 G C 0.27 1.1 (0.94,1.29) 0.243  1.06 (0.89,1.27) 0.487 
rs10771399 12 PTHLH C T 0.88 1.06 (0.87,1.3) 0.538  0.98 (0.77,1.25) 0.877 
rs17356907 12 NTN4 C T 0.71 1.14 (0.97,1.34) 0.102  1.17 (0.98,1.38) 0.076 
rs1292011 12 TBX3 G A 0.60 0.9 (0.78,1.03) 0.117  0.91 (0.78,1.06) 0.210 
rs2236007 14 PAX9 A G 0.78 1.03 (0.89,1.2) 0.685  1.06 (0.89,1.28) 0.513 
rs2588809 14 RAD51L1 C T 0.18 1.07 (0.91,1.26) 0.423  1.24 (1.01,1.52) 0.040 
rs10483813 14 RAD51L1 A T 0.76 1.07 (0.91,1.25) 0.428  0.99 (0.83,1.18) 0.906 
rs941764 14 CCDC88C T C 0.35 1.03 (0.9,1.18) 0.637  1.06 (0.91,1.24) 0.433 
rs3803662 16 CASC16 C T 0.28 1.02 (0.88,1.17) 0.807  1.10 (0.93,1.31) 0.270 
rs17817449 16 FTO G T 0.58 1.08 (0.96,1.23) 0.208  1.05 (0.9,1.23) 0.502 
rs11075995 16 FTO A T 0.77 0.95 (0.82,1.1) 0.484  0.92 (0.76,1.11) 0.380 
rs13329835 16 CDYL2 T C 0.24 1.03 (0.89,1.19) 0.728  1.03 (0.86,1.24) 0.723 
rs6504950 17 STXBP4 A G 0.72 0.98 (0.83,1.15) 0.801  0.94 (0.79,1.12) 0.491 
rs527616 18 18q11.2 G C 0.63 1.02 (0.89,1.18) 0.774  1.04 (0.89,1.22) 0.622 
rs8170 19 BABAM1 G A 0.18 0.92 (0.78,1.09) 0.352  0.95 (0.78,1.16) 0.612 
rs2363956 19 ANKLE1 G T 0.49 0.97 (0.84,1.11) 0.642  0.91 (0.79,1.06) 0.247 
rs4808801 19 ELL C T 0.67 0.99 (0.86,1.14) 0.919  0.94 (0.8,1.11) 0.472 
rs3760982 19 KCNN4 C T 0.49 0.98 (0.86,1.13) 0.817  0.95 (0.82,1.11) 0.505 
rs2823093 21 NRIP1 T C 0.74 0.99 (0.86,1.15) 0.901  1.00 (0.84,1.18) 0.974 
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SNP Chr Locus BC non-
risk allele¶ 

BC risk 
allele¶ 

Freq. BC 
risk allele¶ 

Poisson regression*  Linear regression** 

RR 95% CI P-trend  Geometric 
mean 95% CI P-trend 

rs132390 22 EMID1 T C 0.04 0.87 (0.67,1.14) 0.311  1.04 (0.7,1.55) 0.841 
rs6001930 22 MKL1 A G 0.12 1.24 (1.02,1.5) 0.031  1.17 (0.92,1.49) 0.203 

TDLU: Terminal duct lobular unit; SNP: Single nucleotide polymorphism; Chr: Chromosome; RR: Risk ratio; CI: Confidence interval; TDLU: 
Terminal duct lobular unit. BC: Breast cancer.  
¶Frequency of breast cancer risk allele in our population. 
SNPs were modeled using additive coding for the number of breast cancer risk alleles (0, 1, 2). 
*Based on a multivariable Poisson regression model with robust variance adjusted for study and age (in categories: <30, 30-39, 40-49, 50-59, ≥60) 
and an offset variable accounting for the tissue area on the slide (in log scale). 
**Based on a multivariable linear regression model of the log-transformed TDLU counts per unit area adjusted for study and age (as a continuous 
trend based on categories: <30, 30-39, 40-49, 50-59, ≥60). 



Clara Bodelon – 3/25/2016 

Supplemental Table 2. Associations between breast cancer susceptibility loci and TDLU counts by study 
population. 

SNP Chr Locus 
Komen Tissue Bank*  BREAST Stamp Project* 

P-heterogeneity** 

RR 95% CI P-trend  RR 95% CI P-trend 

rs616488 1 PEX14 1.18 (0.99,1.40) 0.065  1.15 (0.89,1.48) 0.293 0.826 
rs11249433 1 1p11.2 1.08 (0.91,1.27) 0.365  0.88 (0.69,1.12) 0.299 0.180 
rs6678914 1 LGR6 0.85 (0.72,1.00) 0.056  1.12 (0.88,1.43) 0.343 0.059 
rs4245739 1 MDM4 1.14 (0.96,1.34) 0.139  0.94 (0.74,1.19) 0.602 0.222 
rs12710696 2 2p24.1 1.01 (0.86,1.17) 0.947  0.87 (0.69,1.10) 0.259 0.315 
rs4849887 2 2q14.2 1.06 (0.81,1.38) 0.693  0.94 (0.61,1.43) 0.757 0.675 
rs1550623 2 CDCA7 0.97 (0.79,1.19) 0.764  0.92 (0.71,1.18) 0.513 0.725 
rs1045485 2 CASP8 0.9 (0.72,1.12) 0.334  0.90 (0.63,1.27) 0.547 0.965 
rs13387042 2 2q35 1.06 (0.92,1.21) 0.429  1.04 (0.82,1.32) 0.733 0.971 
rs16857609 2 DIRC3 1.09 (0.93,1.28) 0.296  0.90 (0.65,1.24) 0.516 0.306 
rs6762644 3 ITPR1 0.93 (0.79,1.10) 0.409  1.01 (0.77,1.31) 0.970 0.595 
rs4973768 3 SLC4A7 1.03 (0.88,1.20) 0.749  0.82 (0.65,1.03) 0.084 0.105 
rs12493607 3 TGFBR2 1.03 (0.88,1.20) 0.738  1.05 (0.81,1.34) 0.730 0.850 
rs9790517 4 TET2 1.13 (0.94,1.37) 0.202  0.87 (0.67,1.14) 0.317 0.135 
rs6828523 4 ADAM29 1.17 (0.93,1.48) 0.185  1.12 (0.77,1.64) 0.548 0.889 
rs10069690 5 TERT 1.18 (0.98,1.41) 0.084  1.05 (0.81,1.37) 0.718 0.491 
rs2736108 5 TERT 0.93 (0.78,1.10) 0.395  1.18 (0.91,1.52) 0.214 0.138 
rs10941679 5 MRPS30 0.96 (0.80,1.14) 0.626  0.89 (0.69,1.13) 0.332 0.561 
rs889312 5 MAP3K1 0.97 (0.81,1.15) 0.690  0.88 (0.71,1.09) 0.243 0.488 
rs1353747 5 PDE4D 1.13 (0.86,1.49) 0.382  0.9 (0.65,1.24) 0.523 0.283 
rs1432679 5 EBF1 1.02 (0.88,1.18) 0.786  0.81 (0.66,0.99) 0.039 0.078 
rs11242675 6 FOXQ1 1.15 (0.98,1.35) 0.080  1.10 (0.91,1.34) 0.318 0.788 
rs204247 6 RANBP9 0.93 (0.80,1.07) 0.292  0.94 (0.76,1.16) 0.543 0.870 
rs17529111 6 6q14.1 0.89 (0.73,1.08) 0.237  0.96 (0.74,1.24) 0.754 0.608 
rs3757318 6 CCDC170 1.06 (0.81,1.38) 0.677  1.07 (0.71,1.61) 0.746 0.933 
rs2046210 6 ESR1 1.00 (0.86,1.17) 0.955  1.10 (0.89,1.36) 0.387 0.483 
rs720475 7 ARHGEF5 0.98 (0.82,1.16) 0.782  1.16 (0.9,1.48) 0.243 0.288 
rs9693444 8 8p21.1 0.99 (0.83,1.19) 0.926  1.05 (0.81,1.37) 0.709 0.777 
rs6472903 8 8q21.11 1.09 (0.89,1.34) 0.392  1.02 (0.7,1.5) 0.908 0.789 
rs13281615 8 8q24 1.11 (0.94,1.30) 0.209  1.00 (0.79,1.27) 0.988 0.492 
rs11780156 8 MIR1208 1.05 (0.85,1.31) 0.638  0.94 (0.72,1.23) 0.662 0.485 
rs1011970 9 CDKN2A/B 0.94 (0.74,1.20) 0.630  1.23 (0.91,1.65) 0.185 0.217 
rs2380205 10 ANKRD16 1.05 (0.90,1.22) 0.541  1.02 (0.78,1.34) 0.860 0.912 
rs11814448 10 DNAJC1 1.16 (0.71,1.90) 0.541  2.19 (1.67,2.88) <0.001 0.020 
rs10995190 10 ZNF365 0.89 (0.71,1.10) 0.277  0.89 (0.66,1.19) 0.429 0.998 
rs704010 10 ZMIZ1 1.03 (0.89,1.21) 0.674  0.99 (0.81,1.2) 0.906 0.756 
rs11199914 10 10q26.12 0.99 (0.85,1.16) 0.920  0.92 (0.7,1.19) 0.521 0.613 
rs3817198 11 LSP1 0.84 (0.71,1.00) 0.053  0.94 (0.74,1.2) 0.630 0.468 
rs3903072 11 SNX32 1.01 (0.87,1.16) 0.930  0.86 (0.69,1.06) 0.155 0.200 
rs614367 11 CCND1 1.06 (0.90,1.25) 0.458  1.01 (0.65,1.56) 0.965 0.822 
rs11820646 11 11q24.3 1.11 (0.93,1.31) 0.253  0.79 (0.64,0.96) 0.02 0.013 
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SNP Chr Locus 
Komen Tissue Bank*  BREAST Stamp Project* 

P-heterogeneity** 

RR 95% CI P-trend  RR 95% CI P-trend 

rs12422552 12 12p13.1 0.99 (0.84,1.17) 0.909  1.24 (0.94,1.64) 0.13 0.185 
rs10771399 12 PTHLH 0.98 (0.77,1.26) 0.895  1.19 (0.86,1.64) 0.286 0.324 
rs17356907 12 NTN4 1.08 (0.90,1.28) 0.411  1.24 (0.93,1.66) 0.143 0.422 
rs1292011 12 TBX3 0.94 (0.80,1.10) 0.420  0.85 (0.68,1.07) 0.164 0.485 
rs2236007 14 PAX9 0.94 (0.79,1.13) 0.536  1.16 (0.90,1.50) 0.248 0.196 
rs2588809 14 RAD51L1 1.17 (0.98,1.39) 0.092  0.93 (0.66,1.31) 0.681 0.249 
rs10483813 14 RAD51L1 1.13 (0.95,1.34) 0.181  1.02 (0.79,1.33) 0.853 0.551 
rs941764 14 CCDC88C 1.01 (0.87,1.17) 0.898  1.07 (0.84,1.35) 0.593 0.743 
rs3803662 16 CASC16 1.13 (0.96,1.32) 0.146  0.88 (0.69,1.13) 0.328 0.102 
rs17817449 16 FTO 1.06 (0.92,1.23) 0.397  1.12 (0.89,1.41) 0.322 0.755 
rs11075995 16 FTO 1.03 (0.87,1.22) 0.709  0.85 (0.66,1.10) 0.226 0.246 
rs13329835 16 CDYL2 1.05 (0.87,1.27) 0.611  1.00 (0.79,1.25) 0.980 0.774 
rs6504950 17 STXBP4 1.02 (0.86,1.21) 0.851  0.93 (0.70,1.24) 0.613 0.593 
rs527616 18 18q11.2 1.05 (0.89,1.24) 0.536  0.98 (0.77,1.24) 0.861 0.657 
rs8170 19 BABAM1 0.94 (0.78,1.13) 0.496  0.92 (0.69,1.23) 0.577 0.834 
rs2363956 19 ANKLE1 0.97 (0.82,1.14) 0.686  0.97 (0.77,1.22) 0.797 0.989 
rs4808801 19 ELL 0.94 (0.80,1.10) 0.448  1.06 (0.83,1.34) 0.659 0.440 
rs3760982 19 KCNN4 0.97 (0.84,1.14) 0.739  1.01 (0.78,1.31) 0.918 0.869 
rs2823093 21 NRIP1 0.89 (0.75,1.05) 0.152  1.19 (0.91,1.56) 0.196 0.063 
rs132390 22 EMID1 1.01 (0.75,1.36) 0.939  0.73 (0.46,1.15) 0.172 0.237 
rs6001930 22 MKL1 1.19 (0.94,1.50) 0.151  1.27 (0.93,1.75) 0.139 0.696 

TDLU: Terminal duct lobular unit; SNP: Single nucleotide polymorphism; Chr: Chromosome; RR: Risk ratio; 
CI: Confidence interval; TDLU: Terminal duct lobular unit.  
*Based on a multivariable Poisson regression model with robust variance adjusted for age (in categories: <30, 
30-39, 40-49, 50-59, ≥60) and an offset variable accounting for the tissue area on the slide (in log scale). SNPs 
were modeled using additive coding for the number of breast cancer risk alleles (0, 1, 2). 
**P-heterogeneity was computed as the P-value associated with the interaction term between study and the 
corresponding SNP. 
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Supplemental Table 3. Associations between breast cancer susceptibility loci and acini per TDLU count 
among women in the Komen Tissue Bank and BREAST Stamp Project. 

SNP Chr Locus 
Poisson regression*  Linear regression** 

RR 95% CI P-
trend 

 Geometric 
mean 95% CI P-trend 

rs616488 1 PEX14 1.08 (0.95,1.22) 0.239  1.11 (0.97,1.27) 0.146 
rs11249433 1 1p11.2 1.05 (0.93,1.18) 0.459  1.07 (0.94,1.22) 0.290 
rs6678914 1 LGR6 1.07 (0.95,1.2) 0.264  1.04 (0.91,1.18) 0.559 
rs4245739 1 MDM4 1.06 (0.94,1.2) 0.365  1.00 (0.87,1.15) 0.974 
rs12710696 2 2p24.1 0.98 (0.87,1.1) 0.705  0.99 (0.87,1.12) 0.817 
rs4849887 2 2q14.2 1.00 (0.83,1.19) 0.957  1.05 (0.86,1.28) 0.617 
rs1550623 2 CDCA7 0.98 (0.84,1.13) 0.759  0.91 (0.77,1.07) 0.257 
rs1045485 2 CASP8 0.96 (0.81,1.15) 0.688  1.05 (0.86,1.27) 0.632 
rs13387042 2 2q35 0.94 (0.84,1.04) 0.230  1.03 (0.92,1.17) 0.592 
rs16857609 2 DIRC3 0.98 (0.87,1.12) 0.811  0.93 (0.81,1.07) 0.296 
rs6762644 3 ITPR1 0.96 (0.85,1.09) 0.534  0.96 (0.84,1.09) 0.499 
rs4973768 3 SLC4A7 0.94 (0.84,1.05) 0.257  1.04 (0.92,1.18) 0.561 
rs12493607 3 TGFBR2 0.96 (0.85,1.09) 0.574  1.04 (0.91,1.19) 0.529 
rs9790517 4 TET2 0.92 (0.81,1.05) 0.217  1.00 (0.87,1.16) 0.974 
rs6828523 4 ADAM29 0.96 (0.81,1.14) 0.627  1.01 (0.83,1.22) 0.955 
rs10069690 5 TERT 1.03 (0.91,1.17) 0.612  1.05 (0.92,1.21) 0.470 
rs2736108 5 TERT 0.94 (0.84,1.05) 0.252  0.98 (0.86,1.12) 0.736 
rs10941679 5 MRPS30 0.89 (0.78,1.02) 0.086  0.86 (0.75,0.99) 0.034 
rs889312 5 MAP3K1 1.01 (0.89,1.14) 0.886  1.02 (0.89,1.17) 0.747 
rs1353747 5 PDE4D 1.28 (1.07,1.54) 0.007  1.02 (0.83,1.26) 0.852 
rs1432679 5 EBF1 0.95 (0.86,1.04) 0.272  0.99 (0.88,1.12) 0.890 
rs11242675 6 FOXQ1 1.10 (0.98,1.23) 0.108  1.07 (0.94,1.21) 0.308 
rs204247 6 RANBP9 0.92 (0.82,1.03) 0.144  0.92 (0.81,1.04) 0.171 
rs17529111 6 6q14.1 0.96 (0.84,1.1) 0.583  1.04 (0.89,1.22) 0.622 
rs3757318 6 CCDC170 1.03 (0.83,1.28) 0.784  1.07 (0.85,1.34) 0.577 
rs2046210 6 ESR1 1.02 (0.92,1.14) 0.663  1.06 (0.94,1.19) 0.337 
rs720475 7 ARHGEF5 0.98 (0.86,1.11) 0.734  1.03 (0.9,1.18) 0.680 
rs9693444 8 8p21.1 0.94 (0.83,1.06) 0.285  0.99 (0.86,1.13) 0.861 
rs6472903 8 8q21.11 1.18 (1.02,1.36) 0.027  1.22 (1.04,1.43) 0.017 
rs13281615 8 8q24 1.01 (0.9,1.13) 0.901  1.01 (0.89,1.15) 0.873 
rs11780156 8 MIR1208 1.02 (0.87,1.18) 0.840  1.00 (0.85,1.19) 0.954 
rs1011970 9 CDKN2A/B 0.96 (0.79,1.16) 0.656  0.95 (0.8,1.14) 0.587 
rs2380205 10 ANKRD16 0.96 (0.86,1.07) 0.456  0.97 (0.86,1.09) 0.585 
rs11814448 10 DNAJC1 1.22 (0.78,1.92) 0.382  1.11 (0.69,1.8) 0.668 
rs10995190 10 ZNF365 1.03 (0.86,1.23) 0.784  0.98 (0.81,1.17) 0.789 
rs704010 10 ZMIZ1 1.05 (0.95,1.16) 0.382  1.04 (0.92,1.17) 0.514 
rs11199914 10 10q26.12 0.94 (0.84,1.06) 0.308  1.04 (0.92,1.19) 0.505 
rs3817198 11 LSP1 0.96 (0.85,1.09) 0.541  0.93 (0.82,1.06) 0.299 
rs3903072 11 SNX32 1.05 (0.94,1.18) 0.346  1.04 (0.93,1.17) 0.486 
rs614367 11 CCND1 1.01 (0.88,1.14) 0.935  1.03 (0.89,1.2) 0.661 
rs11820646 11 11q24.3 1.00 (0.89,1.11) 0.971  1.00 (0.88,1.13) 0.996 
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SNP Chr Locus 
Poisson regression*  Linear regression** 

RR 95% CI P-
trend 

 Geometric 
mean 95% CI P-trend 

rs12422552 12 12p13.1 1.17 (1.03,1.33) 0.017  1.10 (0.96,1.26) 0.186 
rs10771399 12 PTHLH 0.98 (0.83,1.16) 0.809  0.91 (0.76,1.11) 0.359 
rs17356907 12 NTN4 1.04 (0.91,1.19) 0.582  1.07 (0.94,1.23) 0.299 
rs1292011 12 TBX3 0.90 (0.81,1.01) 0.082  0.94 (0.83,1.07) 0.355 
rs2236007 14 PAX9 1.05 (0.92,1.2) 0.475  1.07 (0.93,1.24) 0.360 
rs2588809 14 RAD51L1 1.07 (0.93,1.22) 0.356  1.14 (0.97,1.34) 0.122 
rs10483813 14 RAD51L1 1.03 (0.93,1.15) 0.541  0.97 (0.85,1.12) 0.694 
rs941764 14 CCDC88C 1.01 (0.9,1.14) 0.821  1.04 (0.92,1.18) 0.521 
rs3803662 16 CASC16 0.98 (0.87,1.1) 0.693  1.01 (0.88,1.16) 0.910 
rs17817449 16 FTO 0.98 (0.88,1.09) 0.742  1.02 (0.9,1.15) 0.736 
rs11075995 16 FTO 0.93 (0.82,1.07) 0.315  0.91 (0.78,1.05) 0.195 
rs13329835 16 CDYL2 0.88 (0.77,1.01) 0.065  0.95 (0.82,1.1) 0.499 
rs6504950 17 STXBP4 0.98 (0.86,1.12) 0.750  0.95 (0.83,1.09) 0.494 
rs527616 18 18q11.2 1.00 (0.9,1.12) 0.959  1.01 (0.89,1.15) 0.893 
rs8170 19 BABAM1 0.97 (0.84,1.12) 0.675  0.91 (0.78,1.07) 0.257 
rs2363956 19 ANKLE1 0.96 (0.87,1.07) 0.488  0.91 (0.81,1.03) 0.138 
rs4808801 19 ELL 1.00 (0.89,1.13) 0.964  1.00 (0.88,1.14) 0.984 
rs3760982 19 KCNN4 0.96 (0.85,1.07) 0.464  0.96 (0.85,1.09) 0.535 
rs2823093 21 NRIP1 0.90 (0.79,1.03) 0.130  0.99 (0.87,1.14) 0.942 
rs132390 22 EMID1 1.07 (0.79,1.45) 0.662  1.01 (0.73,1.39) 0.960 
rs6001930 22 MKL1 1.10 (0.92,1.33) 0.292  1.14 (0.94,1.38) 0.176 

TDLU: Terminal duct lobular unit; SNP: Single nucleotide polymorphism; Chr: Chromosome; RR: Risk ratio; 
CI: Confidence interval. 
*Based on a multivariable Poisson regression model with robust variance adjusted for study and age (in 
categories: <30, 30-39, 40-49, 50-59, ≥60) and an offset variable accounting for the tissue area on the slide (in 
log scale). SNPs were modeled using additive coding for the number of breast cancer risk alleles (0, 1, 2). 
**Based on a multivariable linear regression model of the log-transformed TDLU counts per unit area adjusted 
for study and age (as a continuous trend based on categories: <30, 30-39, 40-49, 50-59, ≥60). SNPs were 
modeled using additive coding for the number of breast cancer risk alleles (0, 1, 2). 
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Supplemental Table 4. Associations between breast cancer susceptibility loci and the product of TDLU counts 
and acini count per TDLU. 

SNP Chr Locus 
Poisson regression*  Linear regression** 

RR 95% CI P-trend  β 95% CI P-trend 

rs616488 1 PEX14 1.07 (0.86,1.33) 0.550  1.3 (0.97,1.74) 0.079 
rs11249433 1 1p11.2 1.12 (0.92,1.36) 0.271  1.14 (0.87,1.51) 0.334 
rs6678914 1 LGR6 0.91 (0.75,1.1) 0.326  1.06 (0.81,1.39) 0.685 
rs4245739 1 MDM4 1.19 (0.99,1.44) 0.065  1.02 (0.75,1.37) 0.911 
rs12710696 2 2p24.1 0.93 (0.77,1.11) 0.407  1.00 (0.76,1.31) 0.972 
rs4849887 2 2q14.2 1.28 (0.95,1.71) 0.103  1.26 (0.83,1.93) 0.275 
rs1550623 2 CDCA7 1.06 (0.85,1.32) 0.603  0.81 (0.56,1.16) 0.252 
rs1045485 2 CASP8 0.91 (0.7,1.19) 0.509  1.05 (0.7,1.59) 0.799 
rs13387042 2 2q35 1.01 (0.88,1.17) 0.850  1.11 (0.86,1.44) 0.422 
rs16857609 2 DIRC3 0.93 (0.75,1.15) 0.501  0.89 (0.66,1.2) 0.452 
rs6762644 3 ITPR1 0.92 (0.76,1.11) 0.378  0.90 (0.68,1.19) 0.448 
rs4973768 3 SLC4A7 0.86 (0.72,1.04) 0.118  1.03 (0.79,1.34) 0.852 
rs12493607 3 TGFBR2 0.94 (0.78,1.13) 0.529  1.15 (0.86,1.53) 0.338 
rs9790517 4 TET2 0.93 (0.75,1.15) 0.501  1.00 (0.73,1.36) 0.993 
rs6828523 4 ADAM29 1.06 (0.81,1.39) 0.666  1.10 (0.73,1.66) 0.658 
rs10069690 5 TERT 1.17 (0.93,1.47) 0.192  1.18 (0.87,1.58) 0.283 
rs2736108 5 TERT 0.97 (0.79,1.18) 0.750  0.97 (0.73,1.29) 0.860 
rs10941679 5 MRPS30 0.90 (0.74,1.1) 0.320  0.75 (0.56,1.02) 0.063 
rs889312 5 MAP3K1 1.02 (0.83,1.25) 0.844  1.03 (0.77,1.39) 0.828 
rs1353747 5 PDE4D 1.40 (1.05,1.88) 0.024  1.05 (0.67,1.65) 0.820 
rs1432679 5 EBF1 0.88 (0.76,1.03) 0.120  0.97 (0.75,1.26) 0.824 
rs11242675 6 FOXQ1 1.15 (0.97,1.37) 0.102  1.17 (0.9,1.52) 0.252 
rs204247 6 RANBP9 0.81 (0.67,0.96) 0.017  0.86 (0.66,1.11) 0.250 
rs17529111 6 6q14.1 0.86 (0.69,1.07) 0.174  1.05 (0.75,1.48) 0.782 
rs3757318 6 CCDC170 1.04 (0.76,1.42) 0.808  1.20 (0.74,1.96) 0.451 
rs2046210 6 ESR1 1.07 (0.89,1.28) 0.473  1.20 (0.93,1.55) 0.159 
rs720475 7 ARHGEF5 1.00 (0.82,1.21) 0.962  1.06 (0.78,1.42) 0.721 
rs9693444 8 8p21.1 0.95 (0.76,1.19) 0.654  0.98 (0.73,1.31) 0.882 
rs6472903 8 8q21.11 1.08 (0.85,1.38) 0.515  1.51 (1.07,2.13) 0.019 
rs13281615 8 8q24 0.95 (0.8,1.14) 0.609  1.04 (0.79,1.36) 0.786 
rs11780156 8 MIR1208 1.01 (0.8,1.28) 0.918  0.99 (0.69,1.42) 0.970 
rs1011970 9 CDKN2A/B 0.97 (0.71,1.33) 0.848  0.98 (0.67,1.43) 0.901 
rs2380205 10 ANKRD16 1.02 (0.86,1.21) 0.832  0.94 (0.72,1.22) 0.627 
rs11814448 10 DNAJC1 1.56 (0.94,2.59) 0.084  1.76 (0.63,4.95) 0.281 
rs10995190 10 ZNF365 0.81 (0.61,1.07) 0.135  0.87 (0.59,1.28) 0.475 
rs704010 10 ZMIZ1 0.99 (0.83,1.17) 0.867  1.04 (0.81,1.35) 0.758 
rs11199914 10 10q26.12 0.92 (0.77,1.1) 0.364  1.06 (0.8,1.39) 0.693 
rs3817198 11 LSP1 0.84 (0.68,1.03) 0.091  0.82 (0.62,1.09) 0.170 
rs3903072 11 SNX32 1.15 (0.99,1.35) 0.076  1.07 (0.83,1.37) 0.619 
rs614367 11 CCND1 1.05 (0.86,1.28) 0.609  1.16 (0.84,1.6) 0.354 
rs11820646 11 11q24.3 1.04 (0.85,1.26) 0.702  0.99 (0.76,1.3) 0.970 
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SNP Chr Locus 
Poisson regression*  Linear regression** 

RR 95% CI P-trend  β 95% CI P-trend 

rs12422552 12 12p13.1 1.12 (0.93,1.35) 0.230  1.17 (0.87,1.58) 0.293 
rs10771399 12 PTHLH 1.16 (0.88,1.55) 0.298  0.93 (0.62,1.4) 0.723 
rs17356907 12 NTN4 1.16 (0.93,1.43) 0.181  1.28 (0.96,1.71) 0.097 
rs1292011 12 TBX3 0.91 (0.76,1.09) 0.315  0.86 (0.66,1.12) 0.268 
rs2236007 14 PAX9 0.94 (0.75,1.19) 0.618  1.14 (0.83,1.55) 0.421 
rs2588809 14 RAD51L1 1.14 (0.91,1.43) 0.268  1.41 (0.99,1.99) 0.055 
rs10483813 14 RAD51L1 1.07 (0.88,1.29) 0.509  0.96 (0.72,1.29) 0.796 
rs941764 14 CCDC88C 1.01 (0.83,1.22) 0.934  1.10 (0.84,1.43) 0.497 
rs3803662 16 CASC16 0.98 (0.81,1.19) 0.856  1.06 (0.79,1.42) 0.703 
rs17817449 16 FTO 1.10 (0.94,1.29) 0.245  1.07 (0.82,1.39) 0.636 
rs11075995 16 FTO 0.99 (0.82,1.2) 0.933  0.83 (0.61,1.15) 0.262 
rs13329835 16 CDYL2 0.91 (0.74,1.13) 0.398  0.99 (0.72,1.35) 0.947 
rs6504950 17 STXBP4 1.04 (0.86,1.27) 0.664  0.9 (0.67,1.2) 0.473 
rs527616 18 18q11.2 1.02 (0.86,1.22) 0.809  1.06 (0.81,1.4) 0.669 
rs8170 19 BABAM1 0.87 (0.7,1.09) 0.239  0.84 (0.6,1.18) 0.314 
rs2363956 19 ANKLE1 1.01 (0.83,1.23) 0.914  0.86 (0.66,1.11) 0.240 
rs4808801 19 ELL 0.96 (0.79,1.17) 0.720  0.96 (0.72,1.28) 0.779 
rs3760982 19 KCNN4 1.04 (0.85,1.27) 0.721  0.95 (0.73,1.23) 0.680 
rs2823093 21 NRIP1 0.93 (0.77,1.13) 0.453  1.00 (0.74,1.33) 0.985 
rs132390 22 EMID1 1.00 (0.65,1.55) 0.983  1.03 (0.52,2.04) 0.929 
rs6001930 22 MKL1 1.30 (0.99,1.72) 0.058  1.41 (0.93,2.13) 0.101 

TDLU: Terminal duct lobular unit; SNP: Single nucleotide polymorphism; Chr: Chromosome; RR: Risk ratio; 
CI: Confidence interval; TDLU: Terminal duct lobular unit.  
*Based on a multivariable Poisson regression model with robust variance adjusted for study and age (in 
categories: <30, 30-39, 40-49, 50-59, ≥60) and an offset variable accounting for the tissue area on the slide (in 
log scale). SNPs were modeled using additive coding for the number of breast cancer risk alleles (0, 1, 2). 
**Based on a multivariable linear regression model of the log-transformed TDLU counts per unit area adjusted 
for study and age (as a continuous trend based on categories: <30, 30-39, 40-49, 50-59, ≥60). SNPs were 
modeled using additive coding for the number of breast cancer risk alleles (0, 1, 2).
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Supplemental Table 5. Associations between breast cancer susceptibility loci and mammographic density (MD) in the breast contralateral to the 
primary pathologic diagnosis from women in the BREAST Stamp Project. 

SNP Chr Locus 
% area  Dense area  Non-dense area 

β* 95% CI P-trend  β* 95% CI P-trend  β* 95% CI P-trend 
rs616488 1 PEX14 -0.16 (-0.54,0.22) 0.417  -0.16 (-0.56,0.25) 0.449  0.17 (-0.47,0.81) 0.598 
rs11249433 1 1p11.2 0.17 (-0.16,0.5) 0.304  0.15 (-0.19,0.5) 0.381  -0.16 (-0.71,0.4) 0.583 
rs6678914 1 LGR6 -0.2 (-0.55,0.15) 0.251  -0.24 (-0.61,0.13) 0.200  0.07 (-0.52,0.66) 0.822 
rs4245739 1 MDM4 -0.08 (-0.44,0.29) 0.681  -0.07 (-0.46,0.31) 0.713  0.16 (-0.47,0.78) 0.623 
rs12710696 2 2p24.1 -0.09 (-0.45,0.27) 0.622  -0.26 (-0.64,0.13) 0.193  -0.17 (-0.79,0.45) 0.586 
rs4849887 2 2q14.2 0.11 (-0.42,0.64) 0.683  -0.13 (-0.7,0.43) 0.644  -0.63 (-1.54,0.28) 0.175 
rs1550623 2 CDCA7 -0.07 (-0.51,0.37) 0.753  0.00 (-0.47,0.48) 0.990  0.36 (-0.4,1.11) 0.351 
rs1045485 2 CASP8 -0.18 (-0.68,0.33) 0.493  -0.29 (-0.83,0.25) 0.296  0.15 (-0.71,1.01) 0.737 
rs13387042 2 2q35 0.47 (0.14,0.8) 0.005  0.39 (0.04,0.74) 0.029  -0.63 (-1.18,-0.07) 0.028 
rs16857609 2 DIRC3 -0.03 (-0.4,0.34) 0.882  -0.06 (-0.44,0.33) 0.763  -0.05 (-0.67,0.57) 0.868 
rs6762644 3 ITPR1 0.40 (0.04,0.77) 0.028  0.49 (0.12,0.87) 0.011  -0.26 (-0.88,0.37) 0.415 
rs4973768 3 SLC4A7 0.23 (-0.11,0.56) 0.179  0.48 (0.13,0.84) 0.008  0.09 (-0.48,0.65) 0.762 
rs12493607 3 TGFBR2 0.03 (-0.35,0.41) 0.866  -0.17 (-0.57,0.24) 0.416  -0.21 (-0.85,0.43) 0.518 
rs9790517 4 TET2 -0.07 (-0.44,0.31) 0.730  0.01 (-0.39,0.4) 0.973  0.12 (-0.5,0.75) 0.698 
rs6828523 4 ADAM29 0.01 (-0.57,0.59) 0.967  0.08 (-0.54,0.69) 0.806  0.28 (-0.7,1.26) 0.578 
rs10069690 5 TERT -0.09 (-0.47,0.28) 0.621  0.04 (-0.35,0.44) 0.831  0.37 (-0.27,1) 0.254 
rs2736108 5 TERT 0.07 (-0.3,0.43) 0.720  0.16 (-0.23,0.55) 0.418  0.03 (-0.59,0.64) 0.935 
rs10941679 5 MRPS30 0.06 (-0.32,0.43) 0.764  -0.07 (-0.47,0.32) 0.716  -0.28 (-0.91,0.35) 0.386 
rs889312 5 MAP3K1 0.22 (-0.13,0.57) 0.219  0.25 (-0.13,0.62) 0.198  -0.34 (-0.93,0.25) 0.261 
rs1353747 5 PDE4D 0.11 (-0.44,0.67) 0.688  -0.19 (-0.78,0.39) 0.517  -0.48 (-1.41,0.46) 0.317 
rs1432679 5 EBF1 -0.3 (-0.65,0.04) 0.080  -0.33 (-0.69,0.04) 0.078  0.41 (-0.16,0.98) 0.161 
rs11242675 6 FOXQ1 -0.19 (-0.53,0.16) 0.283  -0.06 (-0.43,0.3) 0.738  0.46 (-0.11,1.04) 0.115 
rs204247 6 RANBP9 -0.01 (-0.36,0.33) 0.941  -0.2 (-0.56,0.17) 0.290  -0.38 (-0.96,0.2) 0.198 
rs17529111 6 6q14.1 0.01 (-0.4,0.42) 0.963  -0.08 (-0.52,0.35) 0.706  -0.16 (-0.85,0.53) 0.656 
rs3757318 6 CCDC170 -0.11 (-0.7,0.49) 0.719  -0.34 (-0.97,0.29) 0.293  -0.02 (-1.03,0.98) 0.963 
rs2046210 6 ESR1 -0.02 (-0.34,0.29) 0.877  0.03 (-0.3,0.36) 0.860  -0.04 (-0.58,0.49) 0.872 
rs720475 7 ARHGEF5 0.15 (-0.22,0.52) 0.432  0.06 (-0.34,0.45) 0.781  -0.29 (-0.92,0.34) 0.359 
rs9693444 8 8p21.1 0.14 (-0.24,0.52) 0.455  0.11 (-0.28,0.51) 0.580  -0.1 (-0.75,0.55) 0.768 
rs6472903 8 8q21.11 0.02 (-0.45,0.49) 0.928  0.15 (-0.34,0.65) 0.542  0.13 (-0.66,0.92) 0.744 
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SNP Chr Locus 
% area  Dense area  Non-dense area 

β* 95% CI P-trend  β* 95% CI P-trend  β* 95% CI P-trend 
rs13281615 8 8q24 0.11 (-0.21,0.44) 0.487  0.05 (-0.3,0.39) 0.787  -0.37 (-0.92,0.17) 0.180 
rs11780156 8 MIR1208 -0.01 (-0.49,0.46) 0.951  0.13 (-0.37,0.63) 0.613  0.14 (-0.66,0.93) 0.732 
rs1011970 9 CDKN2A/B 0.36 (-0.1,0.83) 0.123  -0.03 (-0.53,0.47) 0.906  -1.11 (-1.89,-0.33) 0.005 
rs2380205 10 ANKRD16 0.14 (-0.19,0.47) 0.404  0.12 (-0.23,0.48) 0.497  -0.14 (-0.71,0.42) 0.620 
rs11814448 10 DNAJC1 1.78 (0.22,3.34) 0.026  1.76 (0.1,3.42) 0.038  -2.36 (-5.02,0.29) 0.081 
rs10995190 10 ZNF365 -0.05 (-0.53,0.42) 0.829  0.2 (-0.3,0.71) 0.429  0.37 (-0.43,1.16) 0.361 
rs704010 10 ZMIZ1 -0.20 (-0.52,0.12) 0.219  -0.02 (-0.36,0.32) 0.896  0.61 (0.07,1.15) 0.026 
rs11199914 10 10q26.12 -0.01 (-0.37,0.34) 0.950  0.01 (-0.37,0.39) 0.965  0.07 (-0.54,0.67) 0.832 
rs3817198 11 LSP1 0.37 (0.03,0.71) 0.034  0.47 (0.11,0.83) 0.011  -0.29 (-0.87,0.28) 0.319 
rs3903072 11 SNX32 0.27 (-0.06,0.6) 0.104  0.27 (-0.08,0.62) 0.123  -0.33 (-0.89,0.23) 0.248 
rs614367 11 CCND1 0.23 (-0.26,0.71) 0.357  0.29 (-0.23,0.8) 0.279  -0.32 (-1.15,0.51) 0.444 
rs11820646 11 11q24.3 0.06 (-0.28,0.4) 0.733  0.19 (-0.18,0.55) 0.315  0.06 (-0.52,0.64) 0.842 
rs12422552 12 12p13.1 -0.06 (-0.43,0.32) 0.764  -0.06 (-0.46,0.34) 0.759  -0.17 (-0.8,0.47) 0.609 
rs10771399 12 PTHLH -0.20 (-0.71,0.31) 0.442  0.08 (-0.46,0.63) 0.764  0.63 (-0.23,1.49) 0.150 
rs17356907 12 NTN4 0.13 (-0.23,0.49) 0.483  0.02 (-0.37,0.41) 0.926  -0.26 (-0.88,0.36) 0.418 
rs1292011 12 TBX3 -0.14 (-0.45,0.17) 0.370  -0.18 (-0.51,0.16) 0.294  0.08 (-0.46,0.61) 0.781 
rs2236007 14 PAX9 0.11 (-0.27,0.49) 0.562  0.06 (-0.34,0.47) 0.763  -0.16 (-0.82,0.49) 0.626 
rs2588809 14 RAD51L1 -0.08 (-0.54,0.38) 0.747  0.25 (-0.24,0.74) 0.316  0.66 (-0.12,1.44) 0.097 
rs10483813 14 RAD51L1 -0.21 (-0.56,0.13) 0.227  -0.14 (-0.51,0.23) 0.445  0.41 (-0.17,1) 0.167 
rs941764 14 CCDC88C 0.05 (-0.29,0.4) 0.758  0.02 (-0.35,0.38) 0.929  -0.05 (-0.63,0.53) 0.862 
rs3803662 16 CASC16 -0.13 (-0.52,0.26) 0.521  0.09 (-0.33,0.5) 0.681  0.38 (-0.27,1.04) 0.251 
rs17817449 16 FTO 0.15 (-0.21,0.51) 0.411  0.12 (-0.25,0.5) 0.519  -0.24 (-0.84,0.37) 0.440 
rs11075995 16 FTO -0.39 (-0.83,0.05) 0.082  -0.38 (-0.85,0.08) 0.108  0.59 (-0.14,1.31) 0.112 
rs13329835 16 CDYL2 0.07 (-0.32,0.45) 0.734  -0.05 (-0.46,0.36) 0.811  -0.24 (-0.88,0.4) 0.461 
rs6504950 17 STXBP4 0.03 (-0.34,0.39) 0.889  -0.05 (-0.44,0.34) 0.797  -0.22 (-0.83,0.39) 0.479 
rs527616 18 18q11.2 -0.24 (-0.59,0.11) 0.185  -0.52 (-0.89,-0.14) 0.007  -0.26 (-0.86,0.34) 0.398 
rs8170 19 BABAM1 0.01 (-0.39,0.41) 0.958  0.05 (-0.38,0.48) 0.815  0.29 (-0.39,0.97) 0.407 
rs2363956 19 ANKLE1 -0.17 (-0.49,0.14) 0.284  -0.18 (-0.51,0.16) 0.307  0.29 (-0.25,0.83) 0.291 
rs4808801 19 ELL 0.26 (-0.08,0.61) 0.132  0.2 (-0.16,0.57) 0.277  -0.45 (-1.04,0.13) 0.128 
rs3760982 19 KCNN4 0.10 (-0.24,0.45) 0.559  0.1 (-0.27,0.47) 0.589  -0.07 (-0.65,0.52) 0.824 
rs2823093 21 NRIP1 0.10 (-0.28,0.48) 0.598  -0.19 (-0.6,0.21) 0.347  -0.46 (-1.1,0.18) 0.158 
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SNP Chr Locus 
% area  Dense area  Non-dense area 

β* 95% CI P-trend  β* 95% CI P-trend  β* 95% CI P-trend 
rs132390 22 EMID1 0.13 (-0.67,0.93) 0.750  0.44 (-0.4,1.29) 0.303  0.34 (-1.01,1.69) 0.623 
rs6001930 22 MKL1 0.04 (-0.46,0.54) 0.878  -0.16 (-0.69,0.37) 0.555  -0.38 (-1.23,0.46) 0.373 

SNP: Single nucleotide polymorphism; Chr: Chromosome; CI: Confidence interval. 
*Based on a linear regression using square root of the density measure as outcome. Analyses were age (continuous) adjusted. SNPs were modeled 
using additive coding for the number of breast cancer risk alleles (0, 1, 2). 
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