67 research outputs found

    TERNARY QUARTIC APPROACH FOR POSITIVE 4TH ORDER DIFFUSION TENSORS REVISITED

    Get PDF
    International audienceIn Diffusion Magnetic Resonance Imaging (D-MRI), the 2nd order diffusion tensor has given rise to a widely used tool – Diffusion Tensor Imaging (DTI). However, it is known that DTI is limited to a single prominent diffusion direction and is inaccurate in regions of complex fiber structures such as crossings. Various other approaches have been introduced to recover such complex tissue micro-geometries, one of which is Higher Order Cartesian Tensors. Estimating a positive diffusion function has also been emphasised mathematically, since diffusion is a physical quantity. Recently there have been efforts to estimate 4th order diffusion tensors from DiffusionWeighted Images (DWIs), which are capable of describing crossing configurations with the added property of a positive diffusion function. We take up one such, the Ternary Quartic approach, and reformulate the estimation equation to facilitate the estimation of the non-negative 4th order diffusion tensor. With our modified approach we test on synthetic, phantom and real data and confirm previous results

    4TH ORDER DIFFUSION TENSOR ESTIMATION AND APPLICATION

    Get PDF
    International audienceHistorically Diffusion MRI started with Diffusion Tensor Imaging (DTI), which boosted the development of schemes for estimating positive definite tensors but were limited by their inability to detect fiber-crossings. Recent HARDI techniques have overcome that shortcoming with a plethora of new reconstruction schemes such as radial basis functions, Spherical Harmonics (SH), Higher Order Tensors (HOT), etc. It is appropriate, therefore, to explore HOT while leveraging the extensive framework already established for classical DTI. In this work, we propose a review and a comparison of the existing methods and an extension to the Riemannian framework to the space of 4 th order diffusion tensors

    A Riemannian Framework for Orientation Distribution Function Computing

    Get PDF
    International audienceCompared with Diffusion Tensor Imaging (DTI), High Angular Resolution Imaging (HARDI) can better explore the complex microstructure of white matter. Orientation Distribution Function (ODF) is used to describe the probability of the fiber direction. Fisher information metric has been constructed for probability density family in Information Geometry theory and it has been successfully applied for tensor computing in DTI. In this paper, we present a state of the art Riemannian framework for ODF computing based on Information Geometry and sparse representation of orthonormal bases. In this Riemannian framework, the exponential map, logarithmic map and geodesic have closed forms. And the weighted Frechet mean exists uniquely on this manifold. We also propose a novel scalar measurement, named Geometric Anisotropy (GA), which is the Riemannian geodesic distance between the ODF and the isotropic ODF. The Renyi entropy H_{1/2} of the ODF can be computed from the GA. Moreover, we present an Affine-Euclidean framework and a Log-Euclidean framework so that we can work in an Euclidean space. As an application, Lagrange interpolation on ODF field is proposed based on weighted Frechet mean. We validate our methods on synthetic and real data experiments. Compared with existing Riemannian frameworks on ODF, our framework is model-free. The estimation of the parameters, i.e. Riemannian coordinates, is robust and linear. Moreover it should be noted that our theoretical results can be used for any probability density function (PDF) under an orthonormal basis representation

    Model-Free, Regularized, Fast, and Robust Analytical Orientation Distribution Function Estimation

    Get PDF
    International audienceHigh Angular Resolution Imaging (HARDI) can better explore the complex micro-structure of white matter compared to Diffusion Tensor Imaging (DTI). Orientation Distribution Function (ODF) in HARDI is used to describe the probability of the fiber direction. There are two type definitions of the ODF, which were respectively proposed in Q-Ball Imaging (QBI) and Diffusion Spectrum Imaging (DSI). Some analytical reconstructions methods have been proposed to estimate these two type of ODFs from single shell HARDI data. However they all have some assumptions and intrinsic modeling errors. In this article, we propose, almost without any assumption, a uniform analytical method to estimate these two ODFs from DWI signals in q space, which is based on Spherical Polar Fourier Expression (SPFE) of signals. The solution is analytical and is a linear transformation from the q-space signal to the ODF represented by Spherical Harmonics (SH). It can naturally combines the DWI signals in dierent Q-shells. Moreover It can avoid the intrinsic Funk-Radon Transform (FRT) blurring error in QBI and it does not need any assumption of the signals, such as the multiple tensor model and mono/multi-exponential decay. We validate our method using synthetic data, phantom data and real data. Our method works well in all experiments, especially for the data with low SNR, low anisotropy and non-exponential decay

    From Diffusion MRI to Brain Connectomics

    Get PDF
    International audienceDiffusion MRI (dMRI) is a unique modality of MRI which allows one to indirectly examine the microstructure and integrity of the cerebral white matter in vivo and non-invasively. Its success lies in its capacity to reconstruct the axonal connectivity of the neurons, albeit at a coarser resolution, without having to operate on the patient, which can cause radical alterations to the patient's cognition. Thus dMRI is beginning to assume a central role in studying and diagnosing important pathologies of the cerebral white matter, such as Alzheimer's and Parkinson's diseases, as well as in studying its physical structure in vivo. In this chapter we present an overview of the mathematical tools that form the framework of dMRI - from modelling the MRI signal and measuring diffusion properties, to reconstructing the axonal connectivity of the cerebral white matter, i.e., from Diffusion Weighted Images (DWIs) to the human connectome

    Spherical Polar Fourier EAP and ODF Reconstruction via Compressed Sensing in Diffusion MRI

    Get PDF
    International audienceIn diffusion magnetic resonance imaging (dMRI), the Ensemble Average Propagator (EAP), also known as the propagator, describes completely the water molecule diffusion in the brain white matter without any prior knowledge about the tissue shape. In this paper, we describe a new and efficient method to accurately reconstruct the EAP in terms of the Spherical Polar Fourier (SPF) basis from very few diffusion weighted magnetic resonance images (DW-MRI). This approach nicely exploits the duality between SPF and a closely related basis in which one can respectively represent the EAP and the diffusion signal using the same coefficients, and efficiently combines it to the recent acquisition and reconstruction technique called Compressed Sensing (CS). Our work provides an efficient analytical solution to estimate, from few measurements, the diffusion propagator at any radius. We also provide a new analytical solution to extract an important feature characterising the tissue microstructure: the Orientation Distribution Function (ODF). We illustrate and prove the effectiveness of our method in reconstructing the propagator and the ODF on both noisy multiple q-shell synthetic and phantom data

    Riemannian Median and Its Applications for Orientation Distribution Function Computing

    Get PDF
    International audienceThe geometric median is a classic robust estimator of centrality for data in Euclidean spaces, and it has been generalized in analytical manifold in [1]. Recently, an intrinsic Riemannian framework for Orientation Distribution Function (ODF) was proposed for the calculation in ODF field [2]. In this work, we prove the unique existence of the Riemannian median in ODF space. Then we explore its two potential applications, median filtering and atlas estimation

    Diffeomorphism Invariant Riemannian Framework for Ensemble Average Propagator Computing

    Get PDF
    International audienceBackground: In Diffusion Tensor Imaging (DTI), Riemannian framework based on Information Geometry theory has been proposed for processing tensors on estimation, interpolation, smoothing, regularization, segmentation, statistical test and so on. Recently Riemannian framework has been generalized to Orientation Distribution Function (ODF) and it is applicable to any Probability Density Function (PDF) under orthonormal basis representation. Spherical Polar Fourier Imaging (SPFI) was proposed for ODF and Ensemble Average Propagator (EAP) estimation from arbitrary sampled signals without any assumption. Purpose: Tensors only can represent Gaussian EAP and ODF is the radial integration of EAP, while EAP has full information for diffusion process. To our knowledge, so far there is no work on how to process EAP data. In this paper, we present a Riemannian framework as a mathematical tool for such task. Method: We propose a state-of-the-art Riemannian framework for EAPs by representing the square root of EAP, called wavefunction based on quantum mechanics, with the Fourier dual Spherical Polar Fourier (dSPF) basis. In this framework, the exponential map, logarithmic map and geodesic have closed forms, and weighted Riemannian mean and median uniquely exist. We analyze theoretically the similarities and differences between Riemannian frameworks for EAPs and for ODFs and tensors. The Riemannian metric for EAPs is diffeomorphism invariant, which is the natural extension of the affine-invariant metric for tensors. We propose Log-Euclidean framework to fast process EAPs, and Geodesic Anisotropy (GA) to measure the anisotropy of EAPs. With this framework, many important data processing operations, such as interpolation, smoothing, atlas estimation, Principal Geodesic Analysis (PGA), can be performed on EAP data. Results and Conclusions: The proposed Riemannian framework was validated in synthetic data for interpolation, smoothing, PGA and in real data for GA and atlas estimation. Riemannian median is much robust for atlas estimation

    A Polynomial Based Approach to Extract Fiber Directions from the ODF and its Experimental Validation

    Get PDF
    International audienceIn Diffusion MRI, spherical functions are commonly employed to represent the diffusion information. The ODF is an intuitive spherical function since its maxima are aligned with the dominant fiber directions. Therefore, it is important to correctly determine these maximal directions, as they are the key to tracing fiber tracts. A tractography algorithm will suffer from cumulative error when the maximal directions are incorrectly estimated locally. The goal of this work is to present a polynomial based approach for estimating the maximal directions correctly. The paper will also present a measure of the correctness of the estimation. This approach will be tested on synthetic, phantom, and real data, and will be compared to an existing discrete “mesh-search” approach [2]. It will be shown how this approach naturally overcomes the inherent shortcomings of the discrete search. Finally, although, the approach is demonstrated on the ODF, it can be equally applied to any spherical function

    FAST AND CLOSED-FORM ENSEMBLE-AVERAGE-PROPAGATOR APPROXIMATION FROM THE 4TH-ORDER DIFFUSION TENSOR

    Get PDF
    International audienceGeneralized Diffusion Tensor Imaging (GDTI) was developed to model complex Apparent Diffusivity Coefficient (ADC) using Higher Order Tensors (HOT) and to overcome the inherent single-peak shortcoming of DTI. However, the geometry of a complex ADC profile doesn't correspond to the underlying structure of fibers. This tissue geometry can be inferred from the shape of the Ensemble Average Propagator (EAP). Though interesting methods for estimating a positive ADC using 4th order diffusion tensors were developed, GDTI in general was overtaken by other approaches, e.g. the Orientation Distribution Function (ODF), since it is considerably difficult to recuperate the EAP from a HOT model of the ADC in GDTI. In this paper we present a novel closed-form approximation of the EAP using Hermite Polynomials from a modified HOT model of the original GDTI-ADC. Since the solution is analytical, it is fast, differentiable, and the approximation converges well to the true EAP. This method also makes the effort of computing a positive ADC worthwhile, since now both the ADC and the EAP can be used and have closed forms. We demonstrate on 4th order diffusion tensors
    • …
    corecore