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Abstract. Background: In Diffusion Tensor Imaging (DTI), Riemannian frame-

work based on Information Geometry theory has been proposed for processing

tensors on estimation, interpolation, smoothing, regularization, segmentation, sta-

tistical test and so on. Recently Riemannian framework has been generalized to

Orientation Distribution Function (ODF) and it is applicable to any Probability

Density Function (PDF) under orthonormal basis representation. Spherical Polar

Fourier Imaging (SPFI) was proposed for ODF and Ensemble Average Propaga-

tor (EAP) estimation from arbitrary sampled signals without any assumption.

Purpose: Tensors only can represent Gaussian EAP and ODF is the radial in-

tegration of EAP, while EAP has full information for diffusion process. To our

knowledge, so far there is no work on how to process EAP data. In this paper, we

present a Riemannian framework as a mathematical tool for such task.

Method: We propose a state-of-the-art Riemannian framework for EAPs by rep-

resenting the square root of EAP, called wavefunction based on quantum mechan-

ics, with the Fourier dual Spherical Polar Fourier (dSPF) basis. In this frame-

work, the exponential map, logarithmic map and geodesic have closed forms,

and weighted Riemannian mean and median uniquely exist. We analyze theoret-

ically the similarities and differences between Riemannian frameworks for EAPs

and for ODFs and tensors. The Riemannian metric for EAPs is diffeomorphism

invariant, which is the natural extension of the affine-invariant metric for ten-

sors. We propose Log-Euclidean framework to fast process EAPs, and Geodesic

Anisotropy (GA) to measure the anisotropy of EAPs. With this framework, many

important data processing operations, such as interpolation, smoothing, atlas es-

timation, Principal Geodesic Analysis (PGA), can be performed on EAP data.

Results and Conclusions: The proposed Riemannian framework was validated

in synthetic data for interpolation, smoothing, PGA and in real data for GA and

atlas estimation. Riemannian median is much robust for atlas estimation.

1 Introduction

Diffusion MRI (dMRI) is the unique non-invasive technique to study the white matter

in vivo by probing the water diffusion. Ensemble Average Propagator (EAP) P(R) is
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the Probability Density Function (PDF) in R3 to describe the diffusion process of water

molecules. Under the narrow pulse assumption, P(R) is the Fourier Transform of signal

attenuation E(q), i.e. P(R) =
∫

E(q) exp(−2πiqT R)dq,. R = Rr is the displacement

vector in R-space, q = qu is the reciprocal vector in q-space, u and r are unit vectors.

In Diffusion Tensor Imaging (DTI) [4], P(R) is a Gaussian PDF parameterized by its

covariance matrix, i.e. tensor. Gaussian distribution is well studied in Information Ge-

ometry theory [1]. Riemannian framework [14, 13, 9] based on Information Geometry

was proposed to process the tensor data. Log-Euclidean framework [2] is to approx-

imate Riemannian framework and efficiently process tensors. Riemannian metric for

tensors is affine-invariant, while Euclidean metric is not [14]. Riemannian framework

and Log-Euclidean framework have proved useful in many works on tensor estimation,

interpolation, filtering, segmentation, registration, statistical analysis [14, 13, 9, 2, 11].

Since DTI can not deal with complex diffusion process, many methods beyond DTI

were proposed to estimate EAP or Orientation Distribution Function (ODF), which

is the radial integral of EAP. Recently Spherical Polar Fourier Imaging (SPFI) [3, 8]

was proposed to analytically and robustly estimate both ODF and EAP by representing

E(q) using Spherical Polar Fourier (SPF) basis. ODF and EAP are both PDFs. Thus

it is possible to extend the Riemannian framework from tensors to ODFs and EAPs

based on Information Geometry theory. [7, 6] and [12] recently developed separately

and in parallel a nonparametric Riemannian framework to process ODF data. To our

knowledge, recent works for EAPs mainly focus on EAP estimation, and there is no

work on how to process EAP data.

In this paper, we first propose the Riemannian framework for EAPs based on the

theoretical results in [7, 6]. We analyze theoretically the similarities and differences

between Riemannian frameworks for EAPs and for ODFs and tensors. For instance the

isotropic EAP is not unique, which brings a different definition of Geodesic Anisotropy

(GA) as well as the Log-Euclidean framework. Then we implement the framework

using the orthonormal basis in SPFI [8]. SPFI provides dSPF basis which analytically

obtains GA and Log-Euclidean framework. For the application part, we propose GA for

measuring the anisotropy of water diffusion, and some Riemannian operations for EAP

computing, such as interpolation, PGA, smoothing, atlas estimation.

2 Riemannian Framework for EAPs

In this section we will show Riemannian framework for EAPs and also analyze and

compare it with the Riemannian framework for ODFs [8] and highlight the new prob-

lems faced and their solutions, since the EAP has different properties from the ODF.
Parametric Family. In quantum mechanics, the square root of the probability of

finding the subject at a certain time and position is called as wavefunction. Anal-
ogously, the square root of EAP, denoted by ψ(R), is also called as wavefunction.
ψ(R) =

√
P(R) ≥ 0. Let {Bi(R)}i∈N is a given orthonormal basis function set in R3

which could sparsely represent ψ(R). then ψ(R) could be represented by finite lin-
ear combination of {Bi(R)},i.e. ψ(R|c) =

∑K
i=1 ciBi(R), where c = (c1, c2, ..., cK)T is

called the Riemannian Coordinate [7]. In practice, we always could choose a large
enough K to represent ψ(R), so the assumption here is very weak. Then the Para-
metric Family or EAP space, called PFK , could be formulated in (1) [7, 6]. Based on



PFK in (1), the Parameter Space (PS), denoted as PS k, is a subset of sphere S K−1.
PS K = {c | ‖c‖ =

∑K
i=1 c2

i
= 1,

∑K
i=1 ciBi(R) ≥ 0, ∀R ∈ R3}. In Fig. 1(A), we visualize

PS 3 as an example where {Bi} were chosen as three piecewise constant orthonormal
functions, i.e. three bins for the histogram. Since the formulation in (1) has been well
studied in [7, 6] and successfully applied for ODFs, in the following we will list the
results in [7, 6] and modify them if necessary so that they can be applied to EAPs.

PFK =















P(R|c) = ψ(R|c)2 : ψ(R|c) =

K
∑

i=1

ciBi(R) ≥ 0,

∫

P(R|c)dR = ‖c‖2 = 1, ∀R ∈ R3















(1)

Riemannian Metric. [7] proved that based on formulation in (1), the Riemannian

metric [1] is gi j =
∫

∂
√

P(R|c)

∂ci

∂
√

P(R|c)

∂c j
dR = 4δi j. The constant 4 could be ignored, then

PS K is a subset of the unit sphere S K−1 and the metric is just the Euclidean metric in

the sphere. The geodesic distance between two points P(R|c) and P(R|c′) will be the

angle between them, i.e. arccos(cT
c
′) = arccos(

∫

R3 ψ(R|c)ψ(R|c′)dR). Denote vc is the

tangent vector at c towards c
′, then the geodesic, exponential map, logarithmic map all

have closed forms. See Fig. 1(A).

Geodesic: γ(t) : P(R|c(t)), where c(t) = Expc(tLogc(c′)) (2)

Exponential Map: Expc(vc) = c
′ = c cosϕ +

vc

‖vc‖
sinϕ, where ϕ = ‖vc‖ (3)

Logarithmic Map: Logc(c′) = vc =
c
′ − c cosϕ

‖c′ − c cosϕ‖
ϕ, where ϕ = arccos(cT

c
′) (4)

Please note that if we change the orthonormal basis {Bi(R)} the exponential map and

logarithmic map are invariant under a change of basis matrix, and the geodesic γ(t) is

also invariant. Different orthonormal basis will obtain equivalent Riemannian frame-

work. The final results of the following Riemannian operations will be the same if the

approximation error is negligible. That is why here we consider the formulation using

orthonormal basis in [7] instead of the formulation using histogram in [12].

Properties of Parameter Space. [7] showed that PS K for EAPs is a closed convex

set of S K−1 and it is contained in a convex cone with 90o. See Fig. 1(C). [7] also proved

for ODFs that “the projection of any c ∈ PS K on the Riemannian Coordinate u of the

isotropic ODF should be more than 1√
4π

, if ODFs are less than 1”, i.e. c
T

u = cos(c,u) =
∫

χ

√
p(x|c) 1√

|χ|
dx > 1√

|χ|

∫

χ
p(x|c)dx = 1√

4π
. However, It is specific for ODFs. Since

the ODF and EAP are both continuous function, it may be more than 1 in some area

although the integral in the whole domain is 1. If P(R|c) > 1, then
√

P(R) < P(R) and

the conclusion will be problematic. Normally for typical ODFs the values are always

less than 1. However, we found that the values of EAPs are normally much larger than

1 because the diffusion time τ is small. Moreover, the isotropic ODF is unique. While

the isotropic EAP is not unique, because P(R) is isotropic if P(Rr) = F(R),∀r ∈ S 2 and

F(R) could be any positive definite function.

Geodesic Anisotropy (GA), Log-Euclidean Framework. GA for ODFs is defined

as the geodesic distance between the ODF and the isotropic one. Log-Euclidean frame-

work for ODFs could be used to approximate Riemannian framework by projecting the



ODFs onto the tangent space of the isotropic ODF [7]. However, the isotropic EAP is

not unique as discussed above. Please note that the isotropic tensor is not unique in DTI

neither. All tensors with three equal eigenvalues are isotropic, i.e. D = [λ, λ, λ]. GA for

tensors was defined as the geodesic distance from the nearest isotropic tensor [9]. And

the identity tensor was chosen and fixed [2] for Log-Euclidean framework. Analogously

we define the GA as the geodesic distance between the EAP and the nearest isotropic

EAP. It could be proved that for any given EAP with coordinate c, the Riemannian

coordinate of the nearest isotropic EAP with the coordinate u, is just the normalized

version of the isotropic part of c. We omit the rigorous proof due to page limitations.

Furthermore we can also fix a typical isotropic Gaussian distribution for all EAPs. Then

Log-Euclidean framework could be obtained by projecting EAPs onto the tangent space

of the fixed isotropic EAP. The projection diffeomorphism is defined as F(c) = Logu(c)

where u is the Riemannian coordinate for the fixed isotropic EAP [7]. See Fig. 1(B).

Weighted Mean, Weighted Median and Principal Geodesic Analysis (PGA).

Given N EAPs f1, f2, ..., fN in PS K and the weight vector w = (w1,w2, ...,wN)T with
∑N

i=1 wi = 1, wi ∈ [0, 1], the weighted Riemannian mean µw is defined as the minimizer

of the weighted sum of squared distances [14, 13, 9, 7, 5]. And the weighted Riemannian

median mw is defined as the minimizer of the weighted sum of distances [10, 6].

µw = arg min
f∈PS K

N
∑

i=1

wid( f , fi)
2 mw = arg min

f∈PS K

N
∑

i=1

wid( f , fi) (5)

[7, 6] proved that the weighted Riemannian mean and weighted Riemannian median

uniquely exist in the manifold PS K based on the general results in [5, 10]. And they

can be obtained efficiently from gradient descent method on the manifold. Normalized

Euclidean mean is chosen as the initialization, which makes the methods converge fast.

See Algorithm 1 and 2. For Log-Euclidean framework, the Riemannian mean has closed

form, i.e. µw = F−1
(

∑N
i=1 wiF( fi)

)

[7]. When Riemannian mean µ of { fi} is obtained,

we can find some Principal Components (PCs) based on Principal Geodesic Analysis

(PGA) [11] by eigen-decomposition of the covariance matrix at µ. If v is one eigen-

vector with eigenvalue λk, then the PC will be Expµ(αkv), where αk ∈ R is the mode

variation. Normally αk is chosen in [−3
√
λk, 3
√
λk] [11]. PGA has been proposed for

tensor analysis [11] and for ODF analysis [12]. However PGA in [12] decompose a

covariance matrix in a very high dimension, which is much inefficient. Actually we

can perform PGA on ODFs and EAPs just in a low dimension via orthonormal basis

representation, which will get the same final results as we discussed above.

Diffeomorphism Invariant: A Natural Extension. What is the connection be-

tween the proposed metric and the previous metric for tensors [14, 13, 9]? Actually

they are all the Fisher Information metric in Information Geometry. The Fisher in-

formation metric is actually diffeomorphism invariant. Denote PX(x|c) is a PDF on

domain χ, h : χ 7→ χ is a diffeomorphism. PY (y|c) is the PDF under g, i.e. y =

h(x). Then PY (y) = |▽h−1(y)|PX(h−1(y)). By considering dy = |▽h(y)|dx, we have

gi j =
∫

χ

∂
√

PY (y|c)

∂ci

∂
√

PY (y|c)

∂c j
dy =

∫

χ

∂
√

PX (x|c)

∂ci

∂
√

PX (x|c)

∂c j
dx, which means the metric gi j is dif-

feomorphism invariant. So for any two given ODFs or EAPs, the Riemannian distance

between them is diffeomorphism invariant. If we constrain the PDF PX(x|D) as a Gaus-

sian distribution parameterized by tensor D, then it could be easily proved that PY (y|D)



Algorithm 1: Weighted Riemannian Mean Algorithm 2: Weighted Riemannian Median

Input: f1, ..., fN ∈ PS K , w = (w1, ...,wN)T Input: f1, ..., fN ∈ PS K , w = (w1, ...,wN)T

Output: µw, the Weighted Mean. Output: µw, the Weighted Median.

Initialization: µ
(0)
w
=

∑N
i=1

wi fi

‖
∑N

i=1
wi fi‖

, k = 0 Initialization: m
(0)
w
=

∑N
i=1

wi fi

‖
∑N

i=1
wi fi‖

, k = 0

Do Do

v
µ

(k)
w

=
∑N

i=1 wiLog
µ

(k)
w

( fi) v
m

(k)
w

=
∑N

i=1

wi/d(mk
w
, fi)

∑N
j=1

w j/d(mk
w
, f j)

Log
m

(k)
w

( fi)

µ
(k+1)
w
= Exp

µ
(k)
w

(v
µ

(k)
w

) m
(k+1)
w
= Exp

m
(k)
w

(v
m

(k)
w

)

k = k + 1 k = k + 1

while ‖v
µ

(k)
w
‖ > ε while ‖v

µ
(k)
w
‖ > ε

is still Gaussian if and only if h(x) is an affine transform, i.e. h(x) = Ax, A is a nonsingu-

lar matrix. In this sense the proposed Riemannian metric for EAPs is actually a natural

extension of previous affine-invariant metric for tensors [14, 13, 9]. The diffeomorphism

invariant metric is probably useful in registration.

3 Implementation via Spherical Polar Fourier Imaging (SPFI)

In theory, the Riemannian framework for EAPs could be implemented by any orthonor-
mal basis. However, so far there is no direct way to estimate the Riemannian Coordinate
c from DWI signals E(q). Existing methods only estimate EAPs. SPFI is a fast, regular-
ized, robust method to estimate EAPs without any assumption [3, 8]. In SPFI, E(q) is
represented by an orthonormal basis {Bnlm(q)} in formula (6), named SPF basis, where
ζ is a fixed scale parameter, Rn(q) is the Gaussian-Laguerre function and Ym

l
(u) is the

l order m degree Spherical Harmonic. [8] proved that the EAP P(R) could be ana-
lytically obtained in formula (8) from the same coefficients {anlm}, where 1F1 is the
confluent hypergeometric function. {Dnlm(R)} is actually an orthonormal basis in R-
space, called Fourier dual Spherical Polar Fourier (dSPF) basis, because of Parseval’s

theorem, i.e. δn′l′m′

nlm
=

∫

R3 Bnlm(q)Bn′l′m′ (q)dq =
∫

R3 Dnlm(R)Dn′l′m′ (R)dR. So SPFI actu-
ally provides two orthonormal basis. One is {Bnlm(q)} in q space for E(q) and the other
one is {Dnlm(R)} in R space for P(R).

E(qu) =

N
∑

n=0

L
∑

l=0

l
∑

m=−l

anlmRn(q)Ym
l (u) Bnlm(q) = Rn(q)Ym

l (u) (6)

Rn(q) = κn(ζ) exp

(

− q2

2ζ

)

L1/2
n (

q2

ζ
) κn(ζ) =

[

2

ζ3/2

n!

Γ(n + 3/2)

]1/2

(7)

P(Rr) =

N
∑

n=0

L
∑

l=0

l
∑

m=−l

an,l,mFnl(R)Ym
l (r) Dnlm(R) = Fnl(R)Ym

l (r) (8)

Fnl(R) =
ζ0.5l+1.5πl+1.5Rl

0
κn(ζ)

(−1)l/2Γ(l + 1.5)

n
∑

i=0

(

n + 0.5

n − i

)

(−1)i

i!
20.5l+i+1.5Γ(0.5l+i+1.5)1F1(

2i + l + 3

2
; l+

3

2
;−2π2R2ζ)

(9)

After obtaining the continuous function P(R) in (8) represented by {Dnlm(R)}, we can

get many discrete samples {ψ(Ri)} from the wavefunction ψ(R) =
√

P(R). Then simi-

larly with [7], a least square fitting using the same basis {Dnlm(R)} is applied to estimate

the Riemannian coordinates c from these samples {ψ(Ri)}. After the Riemannian Coor-

dinate c = {cnlm} is estimated, GA is the distance between c and the nearest isotropic



EAP with coordinate u, which is the normalized version of isotropic part of c. With

the basis {Dnlm(R)}, the isotropic part of {cnlm} is analytically obtained as {cnlmδ
00
lm
}.

The isotropic EAP with coordinate (1, 0, ..., 0)T , which is an isotropic Gaussian based

on SPF basis in (6), was chosen and fixed for Log-Euclidean framework. Thus Log-

Euclidean framework can be obtained analytically from the given Riemannian Coordi-

nate thanks to dSPF basis. Moreover we can perform many data processing algorithms,

such as interpolation, smoothing etc. [7, 12, 14].

4 Applications and Experiments

Experiments on Diffeomorphism Invariance. Here we give a simple example to demon-

strate the diffeomorphism invariance for the Riemannian metric using a affine transform.

Mixture of tensors model P(R) = w1P(R|D1) + w2P(R|D2) was used to generate the

synthetic data. D1 and D2 have the same eigenvalues [1.7, 0.3, 0.3] × 10−3mm2/s with

different directions. We estimated Riemannian Coordinates and computed the Rieman-

nian distance between the EAP in the center and the EAPs in other voxels. Afterwards

a given affine transform A was performed on the mixture model, i.e. (A ◦ P)(R) =

w1P(R|AT D1A) + w2P(R|AT D2A). With this transformed model, we calculated again

the distance maps. In Fig. 1, (C1) shows the original EAPs at 15µm and (C2) shows the

transformed EAPs. The distance maps were used to color the glyphs and were set as the

background. It is clear that the distance is invariant under the transform. This experi-

ment showed that Riemannian metric for EAPs is diffeomorphism invariant, which is a

natural extension of affine-invariant metric for tensors.

Interpolation and PGA. We demonstrate the Lagrange interpolation of EAPs in 1D

and 2D in Fig. 1, where the weights are coded by the spatial distance [7]. For 1D case,

two EAPs were generated from tensors with eigenvalues [1.7, 0.3, 0.3]×10−3mm2/s and

[0.3, 0.3, 0.3] × 10−3mm2/s. For 2D case, one EAP was generated from [0.7, 0.7, 0.7] ×
10−3mm2/s, the other three from [1.7, 0.3, 0.3] × 10−3mm2/s with 3 orthogonal direc-

tions. Fig. 1(D1) and (D3) show the results for Riemannian framework and (D2) and

(D4) for Log-Euclidean framework. EAPs were visualized at 15µm and the glyphs were

colored by GA values. It is clear that the interpolation from Riemannian framework and

Log-Euclidean framework have very similar results. The first two principal components

of EAP field in Fig. 1(D3) based on PGA are shown in (E1) and (E2). The two compo-

nents showed clearly the three orthogonal directions as well as the mean EAP.

Smoothing. . Actually all filtering algorithms in [14] for tensors and in [6, 12] for

ODFs could be generalized into EAP field. Here we just demonstrate a simple Gaus-

sian smoothing method. In this method the filtered EAP in every voxel is the weighted

mean/median of EAPs in a given neighborhood. The weights were chosen from spatial

Gaussian kernel. Fig. 1(F1) shows the ground truth EAP profiles generated from tensor

model with eigenvalues [1.7, 0.3, 0.3] × 10−3mm2/s EAPs in (F2) were estimated from

SPFI from single shell DWI signals with b = 1500s/mm2 and S NR = 5 [8]. The results

of Gaussian smooth using Riemannian mean were shown in Fig. 1(F3). The deviation

of the Gaussian kernel was set as 1 voxel.

GA and Riemannian Median Atlas Estimation. Riemannian median is more ro-

bust than Riemannian mean and Euclidean mean, which makes it more appropriate for



atlas estimation [10, 6]. We construct an EAP atlas from five monkey data, with three

b values (500/1500/3000s/mm2), 30 directions at each shell. Since so far there is no

common registration method for EAP data and it is also not our focus here, we just use

a naive way to align the EAP data. All DWIs from 5 subjects were aligned via affine

registration to a template made by non-diffusion weighted images. The affine transfor-

mation was used to rotate the gradient directions for each subject through the finite

strain method. After that, EAP images were estimated via SPFI from registrated DWIs

and reorientated gradient directions. The atlas in every voxel was estimated as the Rie-

mannian median of the five EAP images. And GA map in Fig. 1(G1) was estimated

from the atlas. To test the robustness, we add Rician noise with S NR = 10 to the DWIs

of one subject, then re-estimate the atlas. Fig. 1 showed the noisy EAPs (G4) and the

EAPs of the two atlases (G2,G3) in the red region in (G1). The atlas from noisy data is

much similar with the one from the real data, which validates the robustness.

5 Conclusion

In this paper, we propose a diffeomorphism invariant Riemannian framework for EAP

computing, which is a natural extension of previous Riemannian framework for tensors

and ODFs. In the proposed framework, exponential map, logarithmic map and geodesic

have closed forms, weighted Riemannian mean and median uniquely exist and could

be calculated efficiently. We analyze theoretically the similarities and differences be-

tween Riemannian frameworks for EAPs and for ODFs and tensors. The isotropic EAP

is not unique, which brings a different definition of GA and the Log-Euclidean frame-

work compare to the Riemannian framework for ODFs. The Riemannian framework for

EAPs is more like the Riemannian framework for tensors, since we need to define what

is the nearest isotropic EAP. And if we constrain the EAP as a Gaussian, the diffeo-

morphism invariance property will be the affine-invariance for tensors. The proposed

Riemannian framework was implemented via SPFI by representing the wavefunction

with dSPF basis, which has closed forms for GA and Log-Euclidean framework. For

application part, we propose GA to measure anisotropy, Lagrange interpolation, Gaus-

sian smoothing, PGA and median atlas estimation for EAP computing.
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