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ABSTRACT

In Diffusion Magnetic Resonance Imaging (D-MRI), the 2nd

order diffusion tensor has given rise to a widely used tool –

Diffusion Tensor Imaging (DTI). However, it is known that

DTI is limited to a single prominent diffusion direction and

is inaccurate in regions of complex fiber structures such as

crossings. Various other approaches have been introduced to

recover such complex tissue micro-geometries, one of which

is Higher Order Cartesian Tensors. Estimating a positive

diffusion function has also been emphasised mathematically,

since diffusion is a physical quantity. Recently there have

been efforts to estimate 4th order diffusion tensors from

Diffusion Weighted Images (DWIs), which are capable of de-

scribing crossing configurations with the added property of a

positive diffusion function. We take up one such, the Ternary

Quartic approach, and reformulate the estimation equation to

facilitate the estimation of the non-negative 4th order diffu-

sion tensor. With our modified approach we test on synthetic,

phantom and real data and confirm previous results.

Index Terms— Diffusion-MRI, Higher Order Tensors,

Ternary Quartics, Diffusion Propagator

1. INTRODUCTION

Diffusion Magnetic Resonance Imaging (D-MRI) provides

a sophisticated tool to study the connectivity of the brain’s

white matter in vivo. This non-invasive approach makes it

possible to determine the micro-structure of the tissue by

measuring and quantizing the diffusion of water molecules

in a restricted environment. This allows to infer the underly-

ing geometry. More specifically partial directional diffusion

information contained in multiple Diffusion Weighted Im-

ages (DWIs) are integrated using a reconstruction model to

generate an image where at every voxel a diffusion function

indicates prominent diffusion directions which reflect the

geometry of the tissue and point out important fiber bundles.

The earliest proposed diffusion function employing a 2nd

order Cartesian tensor has given rise to Diffusion Tensor

Imaging [1], the most popularly utilised approach today. The

diffusion function was defined as D(g) = gT Dg, where g is

the diffusion weighting magnetic gradient vector and D is the

2nd order tensor to be estimated from a set of DWIs. It is well

known, however, that the 3D, 2nd order tensor is incapable of

describing more than one prominent fiber direction, and thus

is inaccurate when complex fiber configurations are present

such as crossings.

In [2], Higher Order Tensors (HOT) were introduced to

allow for a more complex diffusion function capable of de-

scribing crossing fiber configurations. The diffusion function

was remodelled to employ a 3D, Cartesian HOT and written

as

D(g) =
∑3

j1=1

∑3
j2=1 · · ·

∑3
jk=1 Dj1j2...jk

gj1gj2 . . . gjk
,

where gji are again the coordinates of the magnetic gradient

vector and Dj1j2...jk
are now the independent coefficients of

the k-th order diffusion tensor.

Since diffusion is a physical quantity it is meaningless if

the diffusion function is negative in any direction. The authors

of [3] worked with a 4th order diffusion tensor with this added

constraint of non-negative diffusion. For the 4th order they

rearranged the tensor indices to write the diffusion function

as

D(g) =
∑

i+j+k=4

Di,j,kgi
1g

j
2g

k
3 . (1)

In this form (1) can also be interpreted as a Ternary Quartic

(TQ) in the three variables g1, g2 and g3. The authors then

used Hilbert’s theorem on non-negative real TQs, proved in

1888 (see [4]), which states that a non-negative real ternary
quartic is the sum of three squares of quadratic forms. The

authors then parameterized the diffusion function as

D(g) = (vT c1)2+(vT c2)2+(vT c3)2 = vT CCT v = vT GT v,
(2)

where v = [g2
1 , g2

2 , g2
3 , g1g2, g1g3, g2g3] corresponds to the

gradient vector and G is known as the Gram matrix. The

authors estimated C from the DWIs. This parameterization

then inherently guarantees that the diffusion function is non-

negative for every direction. The 15 independent coefficients

of the 4th order diffusion tensor D in (1) can be computed

from G (see [3, 4]).
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However, C is a 6x3 matrix and when decomposed into

two blocks C = [A,B]T where A and B are 3x3 matri-

ces one observes that CO, for any orthogonal 3x3 matrix

O also results in the same Gram matrix, CO(CO)T =
CCT = G. To overcome this ambiguity, the authors used a

QR-decomposition of A.

In this paper we take up again the diffusion function writ-

ten as a TQ as in (1) and use the same parameterization pro-

vided by Hilbert’s theorem as suggested above. But we refor-

mulate (2) to naturally overcome the orthogonal matrix class

ambiguity, and achieve the same results. We test our modified

approach on synthetic, phantom and real data and confirm the

importance of the non-negative diffusion constraint.

2. METHOD

In our approach we use the same diffusion function (1),

though for the sake of simplicity we replace the three vari-

ables g1, g2, g3 of the TQ by x, y, z. Hilbert’s theorem tells

us that if (1) is non-negative then it can be written as a sum of

three squares of quadratic forms

D(x, y, z) = ψ2
1(x, y, z) + ψ2

2(x, y, z) + ψ2
3(x, y, z), (3)

where ψi(x, y, z) = aix
2 + biy

2 + ciz
2 + 2αixy + 2βixz +

2γiyz. Each quadratic form is known if its 6 unknown coeffi-

cients can be estimated from the DWIs. Therefore we set the

unknowns to be xi = [ai, bi, ci, 2αi, 2βi, 2γi]T for i = 1, 2, 3
and define the vector X = [xT

1 ,xT
2 ,xT

3 ]T . Equ.3, for any

gradient direction g, can be therefore written as

D(x1,x2,x3) = xT
1 vvT x1 + xT

2 vvT x2 + xT
3 vvT x3, (4)

where v corresponds to the gradient direction as seen earlier,

and we have rewritten the diffusion function D as a function

of the unknowns that need to be estimated. In other words

D(x1,x2,x3) = [xT
1 ,xT

2 ,xT
3 ]

⎡
⎣ V 0 0

0 V 0
0 0 V

⎤
⎦

⎡
⎣ x1

x2

x3

⎤
⎦

= XT WX,

where V = vvT .

Comparing (2) and (4) provides an insight into the sim-

plicity of the modification which we have proposed by consid-

ering the coefficients of the quadratic forms as the unknowns.

This naturally resolves the ambiguity of the orthogonal matri-

ces in (2). What is more, by writing C′ = [x1,x2,x3] which

is a 6x3 matrix, it is easy to see that the Gram matrix can be

similarly computed from G = C′C′T . Therefore, we esti-

mate X from the DWIs and then shuffling the xis compute

the Gram matrix. Once G is computed we then proceed as in

[3, 4] to extract the 15 unknown coefficients of the 4th order

diffusion tensor.

However, note that we are estimating totally 18 unknown

coefficients of the 3 quadratic forms, whereas the symmet-

ric 4th order diffusion tensor has only 15 independent coef-

ficients. We surmise that this can be resolved by adding ap-

propriate supplementary constraints to the problem and is an

area of interest.

To estimate the unknown coefficients from a set of DWIs

we minimize the following energy equation based on the

modified and linearized Stejskal-Tanner equation

E(X) =
1
2

N∑
i=1

(
1
b

log
(

Si

S0

)
+ XT WiX

)2

, (5)

where N is the number of DWIs. Although here we have

used the linearized form of the Stejskal-Tanner equation, it is

equally possible to use the exponential form.

To minimize the energy function its gradient can be com-

puted to be

∇XE =
N∑

i=1

(
1
b

log
(

Si

S0

)
+ XT WiX

) (
Wi + WT

i

)
X.

(6)

In our implementation we have used the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method, which is a well-known

quasi-Newton optimization algorithm for non-linear prob-

lems.

3. DIFFUSION PROPAGATOR

The 4th order diffusion tensor estimates the ADC from

the DWIs. However it is well known that the maxima of

the ADC do not correspond to the dominant fiber bun-

dle directions in regions of complex fiber configurations

such as crossings [5]. The ADC is related to the diffu-

sion weighted signal by the Stejskal-Tanner equation. From

the diffusion signal it is possible to calculate the Diffusion

Propagator since one is the Fourier transform of the other

P (r) =
∫

E(q) exp (−2πiqT r)dq, where q is the reciprocal

displacement vector corresponding to the magnetic gradient

vector g, E(q) is the signal value associated with the vector

q divided by the zero gradient signal, and r is the spin dis-

placement vector. When the diffusion propagator is evaluated

on a sphere, the maxima of the resulting spherical function

are indicative of the underlying tissue micro-structure.

We use the estimated 4th order diffusion tensor and ex-

trapolate in q-space to synthetically simulate diffusion signal

on a lattice in a box. Using this synthetic signal we numeri-

cally compute the Fourier transform and from there evaluate

the diffusion propagator on a sphere.

4. RESULTS

We tested our modified approach on three test cases. The first

was a statistical test on a synthetic dataset with known fiber
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directions. The second was a phantom dataset with fibers

crossing perpendicularly. And the third was a real human

brain dataset within a selected region with crossing fibers. In

each of the cases we estimated the diffusion tensors from the

DWIs, computed the diffusion propagators, and extracted the

maxima of the propagators evaluated on a sphere.

The synthetic dataset was generated using a multi-tensor

model, with a 2nd order tensor to simulate one fiber direc-

tion. We used a configuration of two fibers crossing perpen-

dicularly with known ground truth directions. The synthetic

DWIs were generated for 81 directions with a b-value of 3000

mm2/s. The signal was corrupted with a random Rician noise

with SNR: 5, 10, 20, 30, 40, 50. For each SNR level we gener-

ated 100 test cases. We estimated the diffusion tensors using

two algorithms. The first was a simple Least Squares (LS)

without a non-negative diffusion constraint, and the second

was our modified TQ approach. The extracted maxima were

then compared to the known ground truth directions and the

mean error in degrees and the variance were computed. The

results are presented in Fig-1. This experiment confirms the

importance of the non-negative diffusion constraint.

The phantom dataset [6] was acquired on a GE Health-

care Signa 1.5T scanner. It had 4000 gradient directions and

for our experiments we used a b-value of 4000 mm2/s. The

phantom had a geometry of two fiber bundles crossing per-

pendicularly close to the X-axis and the Y-axis. Fig.2 shows

the diffusion propagators and their extracted maxima. The ex-

tracted maxima strongly indicate the known goemetry of the

phantom. The average computation time on our 2GHz Intel

dual processor was NxMx0.0021875 seconds, with N gradi-

ent directions and M voxels.

In case of the real human brain dataset [7], we selected

a region of interest (ROI) where on the coronal slice three

major fiber bundles are known to cross. The ROI contained

fiber bundles from the cortico-spinal tract, superior longitudi-

nal fibers (traversing the plane) and the corpus callosum (in

the plane). It was acquired on a 3T Siemens scanner, with 60

gradient directions and a b-value of 1000 mm2/s. Fig-3 shows

the diffusion propagators and the extracted maxima.

5. CONCLUSION

In D-MRI it is essential to accurately reconstruct a diffu-

sion function which faithfully reflects the underlying tissue-

microstructure. Since diffusion is a physical quantity, it is

important that the diffusion function be non-negative in all

directions. The authors of [3] suggested a TQ approach to

estimate a non-negative diffusion function described by a

4th order diffusion tensor. They parameterized the TQ using

Hilbert’s theorem. However in their approach they faced an

ambiguity of an orthogonal matrix class due to their formula-

tion.

We revisited their approach, and realizing that the un-

knowns that needed to be estimated from the DWIs were the

Fig. 1. Synthetic dataset with varying SNR. We compared

the extracted maxima of the propagators to the known ground

truth directions. This shows the importance of the non-

negative diffusion constraint.

coefficients of the quadratic forms we improved the above for-

mulation with a simple modification. This naturally overcame

the orthogonal matrix class ambiguity.

We applied our modified approach to synthetic and phan-

tom data with known fiber configurations and also to a real

human brain dataset. In all the cases after estimating the 4th

order diffusion tensor we numerically computed the diffusion

propagator using a Fourier transform. We extracted the max-

ima of the propagators evaluated on a sphere and were able to

retrieve the dominant fiber directions. In the synthetic case,

with known ground truth directions, we compared the TQ

approach to the LS approach to show the importance of the

non-negative diffusion constraint confirming previous results.

And in the phantom case the extracted fiber directions corre-

sponded strongly to the known geometry of the fibers.

However, we estimated 18 coefficients to calculate the

Gram matrix from which we extracted the 15 independent co-

efficients of a symmetric 4th order tensor. We surmise that

these extra coefficients can be resolved by introducing sup-

plementary constraints to the problem

It is also interesting to note that using either of the ap-

proaches the estimated coefficients C and their negative val-

ues −C give rise to the same Gram matrix and therefore the

same diffusion tensor. To overcome this the authors of the

recently published paper [8] offer another novel parameteri-

zation of C with 6 additional constraints. This permits them

to do a spatial regularization on ||∇C|| unambiguously. We

are in the process of comparing our modified approach to this

latest publication.
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Fig. 2. Phantom dataset. The phantom had a geometry of two fiber bundles crossing perpendicularly close to the X-axis and the

Y-axis. We estimated the 4th order diffusion tensor using our modified approach, from there computed the diffusion propagator,

and its maxima when evaluated on a sphere. The extracted maxima strongly indicate the known fiber geometry of the phantom.

Fig. 3. Real human brain dataset. The ROI on a coronal slice contains fiber bundles from the cortico-spinal tract, superior

longitudinal fibers (traversing the plane) and the corpus callosum (in the plane). We first estimated the 4th order diffusion

tensor using our modified approach, from there computed the diffusion propagator, and its maxima when evaluated on a sphere.

echo,” Journal of Magnetic Resonance, vol. B, no. 103,

pp. 247–254, 1994.

[2] Evren Ozarslan and Thomas H Mareci, “Generalized

diffusion tensor imaging and analytical relationships be-

tween diffusion tensor imaging and high angular resolu-

tion diffusion imaging.,” Magn Reson Med, vol. 50, no.

5, pp. 955–965, Nov 2003.

[3] B. Jian B. C. Vemuri A. Barmpoutis and T. M. Shepherd,

“Symmetric positive 4th order tensors & their estimation

from diffusion weighted mri,” In LNCS 4584 (Springer)
Proceedings of IPMI07: Information Processing in Med-
ical Imaging, pp. 308–319, 2-6 July 2007.

[4] Victoria Powers and Bruce Reznick, “Notes towards a

constructive proof of hilbert’s theorem on ternary quar-

tics,” Quadratic forms and their applications (Dublin
1999), Contemp. Math., vol. 272, no. 9, 2000.

[5] E. Ozarslan, T.M. Shepherd, B.C. Vemuri, S.J. Black-

band, and T.H. Mareci, “Resolution of complex tissue mi-

croarchitecture using the diffusion orientation transform

(dot),” Tech. Rep. TR05-004, University of Florida, July

2005.

[6] C. Poupon, B. Rieul, I. Kezele, M. Perrin, F. Poupon, and

J.-F. Mangin, “New diffusion phantoms dedicated to the

study and validation of hardi models,” Magnetic Reso-
nance in Medicine, vol. 60, no. 6, pp. 1276–83, 2008.

[7] A. Anwander, M. Tittgemeyer, D. Y. von Cramon, A. D.

Friederici, and T. R. Knosche, “Connectivity-based par-

cellation of broca’s area,” Cerebral Cortex, vol. 17, no.

4, pp. 816–825, 2007.

[8] M. S. Hwang D. Howland J. R. Forder A. Barmpoutis and

B. C. Vemuri, “Regularized positive-definite fourth-order

tensor field estimation from DW-MRI,” NeuroImage, vol.

45, no. 1 sup.1, pp. 153–162, March 2009.

621


