6 research outputs found

    Etude des propriĂ©tĂ©s photophysiques de dĂ©rivĂ©s de l’oxylucifĂ©rine et leurs applications Ă  l’étude d’interactions entre biomolĂ©cules

    No full text
    In this work, we investigated the emission mechanism of the optically active part of the firefly luciferin-luciferase complex. This bioluminescent system is widely used in bioanalytical assay. This amazing natural phenomenon results in the emission of visible light (yellow-green-red) from the photoproduct Oxyluciferin. This color tuning mechanism involves six chemical species, but their active involvement in the excited state proton transfer (ESPT) mechanism was poorly understood so far. One of the main finding presented here relies on the identification of six chemical forms of Oxyluciferin involved in the color tuning fluorescence emission mechanism. This result was obtained by studying the optical properties of different structural analogues of firefly Oxyluciferin in aqueous buffer. Different spectroscopic (steady state and time-resolved) and chemometric approaches have been applied to reveal the emission mechanism. In addition, the photophysical properties of Oxyluciferin in complex with the Luciferase enzyme Luciola cruciata have been studied in aqueous buffer as well. In parallel, derivatives displaying environment sensitive emission were used to monitor biomolecular interactions. In particular, we demonstrated that Oxyluciferin can be employed to map intracellular pH by using fluorescence microscopy within living cells. With the help of another Oxyluciferin derivative we were able to monitor the interaction between a HIV-1 protein and different oligonucleotide sequences by means of ratiometric measurements. Finally we develop an approach based on cysteine labeling to monitor in vitro protein-protein interaction.Dans ce travail, nous avons Ă©tudiĂ© le mĂ©canisme d'Ă©mission de la partie optiquement active du complexe lucifĂ©rine-lucifĂ©rase. Ce systĂšme bioluminescent est largement utilisĂ© dans un trĂšs grand nombre d'approches bioanalytiques. Ce phĂ©nomĂšne naturel rĂ©sulte en l'Ă©mission de lumiĂšre visible (vert-jaune-rouge) Ă  partir du photoproduit : l’oxylucifĂ©rine. Une des hypothĂšses couramment admise pour expliquer le mĂ©canisme d’émission de l’oxylucifĂ©reine fait intervenir un Ă©quilibre complexe entre six espĂšces chimiques, mais le dĂ©tail exact du mĂ©canisme reste Ă  Ă©lucider. Les principales conclusions prĂ©sentĂ©es ici repose sur l'identification des six formes chimiques de l’oxylucifĂ©rine impliquĂ©es dans le mĂ©canisme d'Ă©mission de fluorescence et la caractĂ©risation d’un point de vu dynamique du transfert de proton Ă  l’état excitĂ©. Ces rĂ©sultats ont Ă©tĂ© obtenus par l'Ă©tude des propriĂ©tĂ©s optiques de diffĂ©rents analogues structuraux de l’oxylucifĂ©rine dans un tampon aqueux. DiffĂ©rent techniques de spectroscopie (Ă©tat stable et rĂ©solue en temps) et des approches chimiomĂ©triques ont Ă©tĂ© appliquĂ©es pour Ă©tudier ce mĂ©canisme d'Ă©mission. En outre, les propriĂ©tĂ©s photophysiques de l’oxylucifĂ©rine en complexe avec l'enzyme lucifĂ©rase (Luciola cruciata) ont Ă©tĂ© Ă©tudiĂ©es Ă©galement en milieu aqueux. En parallĂšle, les dĂ©rivĂ©s prĂ©sentant des propriĂ©tĂ©s d’émission sensibles Ă  l’environnement ont Ă©tĂ© utilisĂ©s pour visualiser l'interaction entre biomolĂ©cules. En particulier, nous avons dĂ©montrĂ© que l’oxylucifĂ©rine peut ĂȘtre utilisĂ©e pour cartographier le pH intracellulaire Ă  l'aide de la microscopie de fluorescence dans des cellules vivantes. Avec l'aide d'un autre dĂ©rivĂ© de l'oxylucifĂ©rine nous avons Ă©tĂ© en mesure de caractĂ©riser l'interaction entre une protĂ©ine du VIH-1 et des sĂ©quences d'oligonuclĂ©otide au moyen de mesures ratiomĂ©triques. Enfin, nous avons dĂ©veloppĂ© une approche basĂ©e sur le marquage de rĂ©sidus cystĂ©ine pour suivre, in vitro, l'interaction protĂ©ine-protĂ©ine

    Study of the photophysical properties of oxyluciferin derivatives and their applications to the characterization of interactions between biomolecules

    No full text
    Dans ce travail, nous avons Ă©tudiĂ© le mĂ©canisme d'Ă©mission de la partie optiquement active du complexe lucifĂ©rine-lucifĂ©rase. Ce systĂšme bioluminescent est largement utilisĂ© dans un trĂšs grand nombre d'approches bioanalytiques. Ce phĂ©nomĂšne naturel rĂ©sulte en l'Ă©mission de lumiĂšre visible (vert-jaune-rouge) Ă  partir du photoproduit : l’oxylucifĂ©rine. Une des hypothĂšses couramment admise pour expliquer le mĂ©canisme d’émission de l’oxylucifĂ©reine fait intervenir un Ă©quilibre complexe entre six espĂšces chimiques, mais le dĂ©tail exact du mĂ©canisme reste Ă  Ă©lucider. Les principales conclusions prĂ©sentĂ©es ici repose sur l'identification des six formes chimiques de l’oxylucifĂ©rine impliquĂ©es dans le mĂ©canisme d'Ă©mission de fluorescence et la caractĂ©risation d’un point de vu dynamique du transfert de proton Ă  l’état excitĂ©. Ces rĂ©sultats ont Ă©tĂ© obtenus par l'Ă©tude des propriĂ©tĂ©s optiques de diffĂ©rents analogues structuraux de l’oxylucifĂ©rine dans un tampon aqueux. DiffĂ©rent techniques de spectroscopie (Ă©tat stable et rĂ©solue en temps) et des approches chimiomĂ©triques ont Ă©tĂ© appliquĂ©es pour Ă©tudier ce mĂ©canisme d'Ă©mission. En outre, les propriĂ©tĂ©s photophysiques de l’oxylucifĂ©rine en complexe avec l'enzyme lucifĂ©rase (Luciola cruciata) ont Ă©tĂ© Ă©tudiĂ©es Ă©galement en milieu aqueux. En parallĂšle, les dĂ©rivĂ©s prĂ©sentant des propriĂ©tĂ©s d’émission sensibles Ă  l’environnement ont Ă©tĂ© utilisĂ©s pour visualiser l'interaction entre biomolĂ©cules. En particulier, nous avons dĂ©montrĂ© que l’oxylucifĂ©rine peut ĂȘtre utilisĂ©e pour cartographier le pH intracellulaire Ă  l'aide de la microscopie de fluorescence dans des cellules vivantes. Avec l'aide d'un autre dĂ©rivĂ© de l'oxylucifĂ©rine nous avons Ă©tĂ© en mesure de caractĂ©riser l'interaction entre une protĂ©ine du VIH-1 et des sĂ©quences d'oligonuclĂ©otide au moyen de mesures ratiomĂ©triques. Enfin, nous avons dĂ©veloppĂ© une approche basĂ©e sur le marquage de rĂ©sidus cystĂ©ine pour suivre, in vitro, l'interaction protĂ©ine-protĂ©ine.In this work, we investigated the emission mechanism of the optically active part of the firefly luciferin-luciferase complex. This bioluminescent system is widely used in bioanalytical assay. This amazing natural phenomenon results in the emission of visible light (yellow-green-red) from the photoproduct Oxyluciferin. This color tuning mechanism involves six chemical species, but their active involvement in the excited state proton transfer (ESPT) mechanism was poorly understood so far. One of the main finding presented here relies on the identification of six chemical forms of Oxyluciferin involved in the color tuning fluorescence emission mechanism. This result was obtained by studying the optical properties of different structural analogues of firefly Oxyluciferin in aqueous buffer. Different spectroscopic (steady state and time-resolved) and chemometric approaches have been applied to reveal the emission mechanism. In addition, the photophysical properties of Oxyluciferin in complex with the Luciferase enzyme Luciola cruciata have been studied in aqueous buffer as well. In parallel, derivatives displaying environment sensitive emission were used to monitor biomolecular interactions. In particular, we demonstrated that Oxyluciferin can be employed to map intracellular pH by using fluorescence microscopy within living cells. With the help of another Oxyluciferin derivative we were able to monitor the interaction between a HIV-1 protein and different oligonucleotide sequences by means of ratiometric measurements. Finally we develop an approach based on cysteine labeling to monitor in vitro protein-protein interaction

    Study of the photophysical properties of oxyluciferin derivatives and their applications to the characterization of interactions between biomolecules

    No full text
    Dans ce travail, nous avons Ă©tudiĂ© le mĂ©canisme d'Ă©mission de la partie optiquement active du complexe lucifĂ©rine-lucifĂ©rase. Ce systĂšme bioluminescent est largement utilisĂ© dans un trĂšs grand nombre d'approches bioanalytiques. Ce phĂ©nomĂšne naturel rĂ©sulte en l'Ă©mission de lumiĂšre visible (vert-jaune-rouge) Ă  partir du photoproduit : l’oxylucifĂ©rine. Une des hypothĂšses couramment admise pour expliquer le mĂ©canisme d’émission de l’oxylucifĂ©reine fait intervenir un Ă©quilibre complexe entre six espĂšces chimiques, mais le dĂ©tail exact du mĂ©canisme reste Ă  Ă©lucider. Les principales conclusions prĂ©sentĂ©es ici repose sur l'identification des six formes chimiques de l’oxylucifĂ©rine impliquĂ©es dans le mĂ©canisme d'Ă©mission de fluorescence et la caractĂ©risation d’un point de vu dynamique du transfert de proton Ă  l’état excitĂ©. Ces rĂ©sultats ont Ă©tĂ© obtenus par l'Ă©tude des propriĂ©tĂ©s optiques de diffĂ©rents analogues structuraux de l’oxylucifĂ©rine dans un tampon aqueux. DiffĂ©rent techniques de spectroscopie (Ă©tat stable et rĂ©solue en temps) et des approches chimiomĂ©triques ont Ă©tĂ© appliquĂ©es pour Ă©tudier ce mĂ©canisme d'Ă©mission. En outre, les propriĂ©tĂ©s photophysiques de l’oxylucifĂ©rine en complexe avec l'enzyme lucifĂ©rase (Luciola cruciata) ont Ă©tĂ© Ă©tudiĂ©es Ă©galement en milieu aqueux. En parallĂšle, les dĂ©rivĂ©s prĂ©sentant des propriĂ©tĂ©s d’émission sensibles Ă  l’environnement ont Ă©tĂ© utilisĂ©s pour visualiser l'interaction entre biomolĂ©cules. En particulier, nous avons dĂ©montrĂ© que l’oxylucifĂ©rine peut ĂȘtre utilisĂ©e pour cartographier le pH intracellulaire Ă  l'aide de la microscopie de fluorescence dans des cellules vivantes. Avec l'aide d'un autre dĂ©rivĂ© de l'oxylucifĂ©rine nous avons Ă©tĂ© en mesure de caractĂ©riser l'interaction entre une protĂ©ine du VIH-1 et des sĂ©quences d'oligonuclĂ©otide au moyen de mesures ratiomĂ©triques. Enfin, nous avons dĂ©veloppĂ© une approche basĂ©e sur le marquage de rĂ©sidus cystĂ©ine pour suivre, in vitro, l'interaction protĂ©ine-protĂ©ine.In this work, we investigated the emission mechanism of the optically active part of the firefly luciferin-luciferase complex. This bioluminescent system is widely used in bioanalytical assay. This amazing natural phenomenon results in the emission of visible light (yellow-green-red) from the photoproduct Oxyluciferin. This color tuning mechanism involves six chemical species, but their active involvement in the excited state proton transfer (ESPT) mechanism was poorly understood so far. One of the main finding presented here relies on the identification of six chemical forms of Oxyluciferin involved in the color tuning fluorescence emission mechanism. This result was obtained by studying the optical properties of different structural analogues of firefly Oxyluciferin in aqueous buffer. Different spectroscopic (steady state and time-resolved) and chemometric approaches have been applied to reveal the emission mechanism. In addition, the photophysical properties of Oxyluciferin in complex with the Luciferase enzyme Luciola cruciata have been studied in aqueous buffer as well. In parallel, derivatives displaying environment sensitive emission were used to monitor biomolecular interactions. In particular, we demonstrated that Oxyluciferin can be employed to map intracellular pH by using fluorescence microscopy within living cells. With the help of another Oxyluciferin derivative we were able to monitor the interaction between a HIV-1 protein and different oligonucleotide sequences by means of ratiometric measurements. Finally we develop an approach based on cysteine labeling to monitor in vitro protein-protein interaction

    Emission Properties of oxyluciferin and Its Derivatives in Water: Revealing the Nature of the Emissive Species in Firefly Bioluminescence

    Get PDF
    The first systematic steady-state and time-resolved emission study of firefly oxyluciferin (emitter in firefly bioluminescence) and its analogues in aqueous buffers provided the individual emission spectra of all chemical forms of the emitter and the excited-state equilibrium constants in strongly polar environment with strong hydrogen bonding potential. The results confirmed the earlier hypothesis that excited-state proton transfer from the enol group is favored over proton transfer from the phenol group. In water, the phenol-keto form is the strongest photoacid among the isomers and its conjugate base (phenolate-keto) has the lowest emission energy (634 nm). Furthermore, for the first time we observed green emission (525 nm) from a neutral phenol-keto isomer constrained to the keto form by cyclopropyl substitution. The order of emission energies indicates that in aqueous solution a second deprotonation at the phenol group after the enol group had dissociated (that is, deprotonation of the phenol-enolate) does not occur in the first excited state. The pH-dependent emission spectra and the time-resolved fluorescence parameters revealed that the keto-enol tautomerism reaction, which can occur in a nonpolar environment (toluene) in the presence of a base, is not favored in water.status: publishe

    Molecular gating of an engineered enzyme captured in real time

    No full text
    Enzyme engineering tends to focus on the design of active sites for the chemical steps, while the physical steps of the catalytic cycle are often overlooked. Tight binding of a substrate in an active site is beneficial for the chemical steps, whereas good accessibility benefits substrate binding and product release. Many enzymes control the accessibility of their active sites by molecular gates. Here we analyzed the dynamics of a molecular gate artificially introduced into an access tunnel of the most efficient haloalkane dehalogenase using pre-steady-state kinetics, single-molecule fluorescence spectroscopy, and molecular dynamics. Photoinduced electron-transfer fluorescence correlation spectroscopy (PET-FCS) has enabled real-time observation of molecular gating at the single-molecule level with rate constants (k(on) = 1822 s(-1), k(off) = 60 s(-1)) corresponding well with those from the pre-steady-state kinetics (k(-1) = 1100 s(-1), k(1) = 20 s(-1)). The PET-FCS technique is used here to study the conformational dynamics in a soluble enzyme, thus demonstrating an additional application for this method. Engineering dynamical molecular gates represents a widely applicable strategy for designing efficient biocatalysts

    Oxyluciferin Derivatives: A Toolbox of Environment-Sensitive Fluorescence Probes for Molecular and Cellular Applications

    No full text
    In this work, we used firefly oxyluciferin (<b>OxyLH</b><sub><b>2</b></sub>) and its polarity-dependent fluorescence mechanism as a sensitive tool to monitor biomolecular interactions. The chromophores, <b>OxyLH</b><sub><b>2</b></sub>, and its two analogues, <b>4-MeOxyLH</b> and <b>4,6â€Č-DMeOxyL</b>, were modified trough carboxylic functionalization and then coupled to the N-terminus part of Tat and NCp7 peptides of human immunodeficiency virus type-1 (HIV-1). The photophysical properties of the labeled peptides were studied in live cells as well as in complex with different oligonucleotides in solution. By monitoring the emission properties of these derivatives we were able, for the first time, to study <i>in vitro</i> biomolecular interactions using oxyluciferin as a sensor. As an additional application, cyclopropyl-oxyluciferin (<b>5,5-Cpr-OxyLH</b>) was site-specifically conjugated to the thiol group (Cys-232) of the human protein α-1 antytripsin to investigate its interaction with porcine pancreatic elastase. Our data demonstrate that <b>OxyLH</b><sub><b>2</b></sub> and its derivatives can be used as fluorescence reporters for monitoring biomolecular interactions
    corecore