33 research outputs found

    Voltage balancing method for a seven-level stacked multicell converter using minimum-switching transitions

    Get PDF
    This paper presents a voltage balancing method for stacked multicell converters based on phase disposition pulse-width modulation. This method is based on minimizing a cost function to determine the optimum redundant state for capacitor voltage balance for each particular voltage level. The robustness of the proposed voltage balancing method is verified against static and dynamic unbalanced load conditions. Furthermore, a significant reduction in the switching frequencies of the power devices is achieved by using sawtooth carriers instead of standard triangular carriers without affecting the voltage balancing capability.Peer ReviewedPostprint (published version

    Voltage balancing scheme for the multilevel flying capacitor converter using phase-shifted PWM

    Get PDF
    In flying capacitor (FC) converters, phase-shifted pulse-width modulation (PS-PWM) provides natural voltage balancing. However, for a practical application, a more robust balancing mechanism of maintaining the FC voltages at the desired values is required. This paper proposes a new closed-loop voltage balancing method for multilevel FC converters using PS-PWM. The proposed method balances the voltages of the FCs by modifying the duty cycle of each switch of the FC converter using a proportional (P) controller. The crossed effect between FC currents and duty cycles is considered and is used for FC voltage balancing. The Simulation results verify that the proposed voltage balancing method is very robust to different operating conditions, such as load transients and non-linear loads.Postprint (author’s final draft

    Voltage balancing strategy for a five-level flying capacitor converter using phase disposition PWM with sawtooth-shaped arriers

    Get PDF
    The flying capacitor (FC) multilevel converter has attracted a great deal of interest in the recent years because of its easier extension to a higher number of levels (n>;3), as compared to its counterpart, the diode-clamped converter (DCC). The main focus of this paper is to develop a voltage balancing scheme of FCs for a five-level FC converter based on phase disposition pulse-width modulation (PD-PWM). Since there are multiple states that produce the same output voltage at the leg of the converter, such a redundancy is used to regulate the FC voltages at their desired levels. The selection of the optimal states is performed by minimizing a cost function. A drawback observed when using standard symmetrical triangular carriers for the PD-PWM, is the additional switching events that are produced due to transitions within the same voltage level. Nevertheless, this fact can be avoided by using sawtooth carrier waveforms instead. Simulation results verify the robustness of the proposed voltage balancing scheme against static and dynamic load conditions. Moreover, using sawtooth carriers a significant reduction of the switching frequency is achieved as compared to the use of standard triangle carriers while maintaining the FC voltage balanced.Peer ReviewedPostprint (author’s final draft

    Optimum state voltage balancing method for stacked multicell converters

    Get PDF
    This paper presents a voltage balancing method for stacked multicell converters based on phase disposition pulse-width modulation. This method is based on minimizing a cost function to determine the optimum redundant state for capacitor voltage balance for each particular voltage level. The robustness of the proposed voltage balancing method is verified against static and dynamic unbalanced load conditions. Furthermore, a significant reduction in the switching frequencies of the power devices is achieved by using sawtooth carriers instead of standard triangular carriers without affecting the voltage balancing capability.Peer ReviewedPostprint (published version

    A Reduced-Order Generalized Proportional Integral Observer-Based Resonant Super-Twisting Sliding Mode Control for Grid-Connected Power Converters

    Get PDF
    This article presents a reduced-order generalized proportional-integral observer based resonant super-twisting sliding mode controller (RST-SMC) for the three-phase ac-dc converters. On the contrary to utilizing the proportional-integral controller in regulating the dc-link voltage, which may cause large undershoot/overshoot under the disturbance, the proposed voltage control strategy for the dc-link has high disturbance rejection ability and the settling time has been greatly reduced. In addition, the proposed RST-SMC in the current control loop not only preserve the merits of the sliding mode controller but also achieve the current tracking without steady-state error in the stationary \alpha - \beta frame. The effectiveness of the proposed method has been verified by a lab-constructed experimental prototype.This work was supported by Shenzhen Overseas High Level Talent Program. The work of Josep M. Guerrerork was supported by VILLUM FONDEN under the VILLUM Investigator Grant (no. 25920): Center for Research on Microgrids (CROM); www.crom.et.aau.dk

    An Effective Solution for Regeneration Protection in Uninterruptible Power Supply

    Get PDF

    Voltage balancing method for the multilevel flying capacitor converter using phase-shifted PWM

    No full text
    n flying capacitor (FC) converters, phase-shifted pulse-width modulation (PS-PWM) provides natural voltage balancing. However, for a practical application, a more robust balancing mechanism of maintaining the FC voltages at the desired values is required. This paper proposes a new closed-loop voltage balancing method for multilevel FC converters using PS-PWM. The proposed method balances the voltages of the FCs by modifying the duty cycle of each switch of the FC converter using a proportional (P) controller. The crossed effect between FC currents and duty cycles is considered and is used for FC voltage balancing. The Simulation results verify that the proposed voltage balancing method is very robust to different operating conditions, such as load transients and non-linear loads.Peer Reviewe

    Initial capacitor charging in grid-connected flying capacitor multilevel converters

    No full text
    This letter reports a method for the initial charging of capacitors in grid-connected flying capacitor (FC) multilevel converters. A resistor is inserted between each phase of the FC converter and the grid. A voltage balancing algorithm is activated from the beginning of the process and the FC converter generates proper output voltages to achieve balanced charging of both the dc-bus capacitor and the FCs. The proposed initial charging method achieves low voltage and current stress on the power devices and the passive components. The method is simple to implement and can be applied to an FC with any number of levels. Experimental results demonstrate the effectiveness of the proposed method.Postprint (published version

    Solid State Transformer Based on the Flying Capacitor Multilevel Converter for Intelligent Power Management

    No full text
    Future grids will consist of large scale of integration of both renewable and other distributed energy sources. Therefore, advanced power electronics converters for critical loads will be needed in order to enhance power quality, and to ensure proper and secure operation of future grids. These power converters must be able to provide intelligent power management as well as ancillary services. This paper proposes a solid state transformer (SST) which consists of medium frequency transformer and threelevel flying capacitor (FC) topology for intelligent power management. It is tested under various grid events such as voltage excursions, phase jumps and frequency variations. Moreover, it is tested against load disturbances such as load transients and nonlinear loads. The SST enhances power quality compatibility and provides good isolation of perturbances between the grid and the loads. The SST is also able to deliver ride through capabilities, which can isolate short term disturbances from the grid to the loads and vice-versa. The Power quality enhancement features are validated under various source and load conditions using computer simulation.Peer Reviewe

    Voltage balancing method using phase-shifted PWM for stacked multicell converters

    No full text
    This paper proposes an active voltage balancing method for stacked multicell converters (SMC) using phase-shifted pulse-width modulation, which is easy to implement and extend to high number of levels. The proposed method balances the voltages of the capacitors by modifying the duty cycle of each switch of the SMC using a proportional controller. The crossed effect between capacitor currents and duty cycles is considered and is used for optimal capacitor voltage balance. The performance of the proposed voltage balancing method is verified by simulation for different operating conditions, such as unbalanced linear loads, non-linear loads and load transients.Peer Reviewe
    corecore