A Reduced-Order Generalized Proportional Integral Observer-Based Resonant Super-Twisting Sliding Mode Control for Grid-Connected Power Converters

Abstract

This article presents a reduced-order generalized proportional-integral observer based resonant super-twisting sliding mode controller (RST-SMC) for the three-phase ac-dc converters. On the contrary to utilizing the proportional-integral controller in regulating the dc-link voltage, which may cause large undershoot/overshoot under the disturbance, the proposed voltage control strategy for the dc-link has high disturbance rejection ability and the settling time has been greatly reduced. In addition, the proposed RST-SMC in the current control loop not only preserve the merits of the sliding mode controller but also achieve the current tracking without steady-state error in the stationary \alpha - \beta frame. The effectiveness of the proposed method has been verified by a lab-constructed experimental prototype.This work was supported by Shenzhen Overseas High Level Talent Program. The work of Josep M. Guerrerork was supported by VILLUM FONDEN under the VILLUM Investigator Grant (no. 25920): Center for Research on Microgrids (CROM); www.crom.et.aau.dk

    Similar works