5 research outputs found

    Logarithmic corrections to the Bekenstein_Hawking entropy for five-dimensional black holes and de Sitter spaces

    Get PDF
    We calculate corrections to the Bekenstein-Hawking entropy formula for the five-dimensional topological AdS (TAdS)-black holes and topological de Sitter (TdS) spaces due to thermal fluctuations. We can derive all thermal properties of the TdS spaces from those of the TAdS black holes by replacing kk by −k-k. Also we obtain the same correction to the Cardy-Verlinde formula for TAdS and TdS cases including the cosmological horizon of the Schwarzschild-de Sitter (SdS) black hole. Finally we discuss the AdS/CFT and dS/CFT correspondences and their dynamic correspondences.Comment: 9 pages, version to appear in PL

    Phase transitions for the topological de Sitter spaces and Schwarzschild-de Sitter black hole

    Get PDF
    We study whether the Hawking-Page phase transition may occur in topological de Sitter spaces (TdS) and Schwarzschild-de Sitter black hole (SdS). We show that at the critical temperature T=T1T=T_1, TdS with hyperbolic cosmological horizon can make the Hawking-Page transition from the zero mass de Sitter space to TdS. It is also shown that there is no Hawking-Page transition for TdS with Ricci-flat and spherical horizons, when the zero mass de Sitter space is taken as the thermal background. Also we find that the SdS undergoes a different phase transition at T=0 which the Nariai black hole is formed. Finally we connect our results to the dS/CFT correspondence.Comment: 17 pages, 9 eps figures, title slightly changed version to appear in PL

    Relationship between five-dimensional black holes and de Sitter spaces

    Full text link
    We study a close relationship between the topological anti-de Sitter (TAdS)-black holes and topological de Sitter (TdS) spaces including the Schwarzschild-de Sitter (SdS) black hole in five-dimensions. We show that all thermal properties of the TdS spaces can be found from those of the TAdS black holes by replacing kk by −k-k. Also we find that all thermal information for the cosmological horizon of the SdS black hole is obtained from either the hyperbolic-AdS black hole or the Schwarzschild-TdS space by substituting mm with −m-m. For this purpose we calculate thermal quantities of bulk, (Euclidean) conformal field theory (ECFT) and moving domain wall by using the A(dS)/(E)CFT correspondences. Further we compute logarithmic corrections to the Bekenstein-Hawking entropy, Cardy-Verlinde formula and Friedmann equation due to thermal fluctuations. It implies that the cosmological horizon of the TdS spaces is nothing but the event horizon of the TAdS black holes and the dS/ECFT correspondence is valid for the TdS spaces in conjunction with the AdS/CFT correspondence for the TAdS black holes.Comment: 17 page

    Dynamical Behavior of dilaton in de Sitter space

    Get PDF
    We study the dynamical behavior of the dilaton in the background of three-dimensional Kerr-de Sitter space which is inspired from the low-energy string effective action. The perturbation analysis around the cosmological horizon of Kerr-de Sitter space reveals a mixing between the dilaton and other fields. Introducing a gauge (dilaton gauge), we can disentangle this mixing completely and obtain one decoupled dilaton equation. However it turns out that this belongs to the tachyon. The stability of de Sitter solution with J=0 is discussed. Finally we compute the dilaton absorption cross section to extract information on the cosmological horizon of de Sitter space.Comment: 11 pages, reference added and a version to appear in PL

    No absorption in de Sitter space

    Get PDF
    We study the wave equation for a minimally coupled massive scalar in D-dimensional de Sitter space. We compute the absorption cross section to investigate its cosmological horizon in the southern diamond. By analogy of the quantum mechanics, it is found that there is no absorption in de Sitter space. This means that de Sitter space is usually in thermal equilibrium, like the black hole in anti de Sitter space. It confirms that the cosmological horizon not only emits radiation but also absorbs that previously emitted by itself at the same rate, keeping the curvature radius of de Sitter space fixed.Comment: 11 pages, REVTE
    corecore