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Abstract

We calculate corrections to the Bekenstein–Hawking entropy formula for the five-dimensional topological AdS (TAdS
holes and topological de Sitter (TdS) spaces due to thermal fluctuations. We can derive all thermal properties of the T
from those of the TAdS black holes by replacingk by −k. Also we obtain the same correction to the Cardy–Verlinde formula
TAdS and TdS cases including the cosmological horizon of the Schwarzschild–de Sitter (SdS) black hole. Finally we
the AdS/CFT and dS/CFT correspondences and their dynamic correspondences.
 2003 Elsevier B.V.

1. Introduction

Recently there are several works which show that for a large class of black holes (AdS–Schwarzsch
the Bekenstein–Hawking entropy receives logarithmic corrections due to thermodynamic fluctuations [1–
corrected formula takes the form

(1)S = S0 − 1

2
lnCv + · · · ,

whereCv is the specific heat of the given system at constant volume andS0 denotes the uncorrected Bekenste
Hawking entropy. Here an important point is that for Eq. (1) to make sense,Cv should be positive. Howeve
the d-dimensional Schwarzschild black hole which is asymptotically flat has a negative specific heat ofCSch

v =
−(d − 2)S0 [6]. This means that the Schwarzschild black hole is never in thermal equilibrium and it evap
according to the Hawking radiation. But the Schwarzschild black hole could be thermal equilibrium with a ra
in a bounded box. This is because the black hole has a negative specific heat while the radiation has a pos
The two will be in thermal equilibrium if the box is bounded. The AdS–Schwarzschild black hole belongs
category. On the contrary, if the box is unbounded as the Schwarzschild black hole, the black hole ev
completely. Furthermore we note that a cosmological horizon in five-dimensional de Sitter space has a
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v = 3S0. Hence we can use the Eq. (1) to calculate the correction to the Bekenstein–Ha

entropy of the cosmological horizon.
In this Letter, we find new five-dimensional AdS-black holes and de Sitter spaces which give us positive

heats and thus logarithmic corrections to the entropy are achieved. These are the topological AdS-bla
and topological de Sitter spaces. For completeness, we study thermal properties of the Schwarzschild–
black hole. Further we make corrections to the Cardy–Verlinde formula which is a higher-dimensional
of the two-dimensional Cardy formula. This formula realizes the holography principle through the A(dS
correspondences.

2. Topological AdS black holes

It is believed that black holes in asymptotically flat spacetime should have spherical horizon. When intro
a negative cosmological constant, a black hole can have non-spherical horizon. We call this the topologic
hole [7]. The topological AdS black holes in five-dimensional spacetimes are given by

(2)ds2
TAdS = −h(r) dt2 + 1

h(r)
dr2 + r2[dχ2 + fk(χ)2

(
dθ2 + sin2 θ dφ2)],

wherek describes the horizon geometry with a constant curvature.h(r) andfk(χ) are given by

(3)h(r) = k − m

r2
+ r2

�2
, f0(χ) = χ, f1(χ) = sinχ, f−1(χ) = sinhχ.

Here we definek = 1,0, and−1 cases as the Schwarzschild–AdS (SAdS) black hole [8], flat-AdS (FAdS)
hole, and hyperbolic-AdS (HAdS) black hole [9], respectively. In the case ofk = 1, m = 0, we have an exac
AdS5-space with its curvature radius�. However,m �= 0 generates the topological AdS black holes. The only e
horizon is given by

(4)r2
EH = �2

2

(
−k +

√
k2 + 4m/�2

)
.

For k = 1, we have both a small black hole(r2
EH � �2,4m � �2) with the horizon atr = rEH, wherer2

EH � m and
a large black hole(r2

EH � �2,4m � �2) with the horizon atr = rEH given byr2
EH � √

m�. Fork = 0 case, one ha
the event horizon atr = rEH, wherer2

EH = √
m�. In the case ofk = −1, for 4m � �2 one has the event horizon

r = rEH, wherer2
EH � �2 + m and for 4m� �2 one has the event horizon atr = rEH given byr2

EH � √
m�. That

is, one always findsr2
EH > �2 for k = −1. This analysis is useful to justify whether the corresponding specific

is or not positive.
The relevant thermodynamic quantities: reduced mass (m), free energy (F ), Bekenstein–Hawking entropy (S0),

Hawking temperature (TH), and energy (ADM mass:E = M) are given by [10]

m = r2
EH

(
r2
EH

�2 + k

)
, F = − V3r

2
EH

16πG5

(
r2
EH

�2 − k

)
, S0 = V3r

3
EH

4G5
,

(5)TH = k

2πrEH
+ rEH

π�2
, E = F + THS0 = 3V3m

16πG5
= M,

whereV3 is the volume of unit three-dimensional hypersurface andG5 is the five-dimensional Newton consta
Using the above together withCv = (dE/dT )V , one finds

(6)Cv = 3
2r2

EH + k�2

2r2
EH − k�2

S0.
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Here we obtain two positive specific heats for HAdS and FAdS black holes

(7)CHAdS
v > 0, CFAdS

v = 3S0 > 0, for anyrEH.

On the other hand one finds a condition for positive specific heat for SAdS black hole [8]

(8)CSAdS
v > 0, for r2

EH > �2/2.

In the limit of � → ∞, we recover the negative specific heat (CSch
v = −3Ss ) of the Schwarzschild black hole. O

the other hand, in the limit of� → 0 one finds a positive value ofC�→0
v = 3S0 for the large SAdS-black hole.

3. Schwarzschild–de Sitter black hole

In order to find thermal property of a black hole in de Sitter space, we consider Schwarzschild–de Sitte
black hole in five-dimensional spacetimes [11]

(9)ds2
SdS= −h(r) dt2 + 1

h(r)
dr2 + r2[dχ2 + sin2χ

(
dθ2 + sin2 θ dφ2)],

whereh(r) is given by

(10)h(r) = 1− m

r2 − r2

�2 .

In the case ofm = 0, we have an exact de Sitter space with its curvature radius�. However,m �= 0 generates th
SdS black hole. Here we have two horizons. The cosmological and event horizons are given by

(11)r2
CH/EH = �2

2

(
1±

√
1− 4m/�2

)
.

We classify three cases: (1) 4m= �2, (2) 4m> �2, (3) 4m< �2. The case of 4m = �2 corresponds to the maximu
black hole and the minimum cosmological horizon in asymptotically de Sitter space (that is, Nariai black h
this case we haver2

EH = r2
CH = �2/2= 2m. The case of 4m> �2 is not allowed for the black hole in de Sitter spa

The case of 4m< �2 corresponds to a small black hole within the cosmological horizon. In this case we ha
cosmological horizon atr = rCH, wherer2

CH � �2 − m and the event horizon atr = rEH given byr2
EH � m. Hence

we have two relations for the SdS solution:

(12)m � r2
EH � �2/2, �2/2 � r2

CH � �2 − m

which means that asm increases from a small value to the maximum ofm = �2/4, a small black hole increases u
to the Nariai black hole. On the other hand the cosmological horizon decreases from the maximum of(�2 − m) to
the minimum of�2/2.

The relevant thermodynamic quantities for two horizons are given by [12,13]

m = r2
EH/CH

(
− r2

EH/CH

�2 + 1

)
, FEH/CH = ±V3r

2
EH/CH

16πG5

(
r2
EH

�2 + 1

)
, S0 = V3r

3
EH/CH

4G5
,

(13)T
EH/CH
H = ± 1

2πrEH/CH
∓ rEH/CH

π�2 , E = FEH/CH + T
EH/CH
H S0 = ± 3V3m

16πG5
,

whereV3 is the volume of unit three-dimensional sphere. Using the above relations, one finds

(14)CEH/CH
v = 3

2r2
EH/CH − �2

2r2 + �2
S0.
EH/CH
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Making use of Eq. (12), one finds negative specific heat for the event horizon of the SdS black hole (ES
positive specific heat for the cosmological horizon (CSdS)

(15)CESdS
v � 0, CCSdS

v � 0, for anyrEH.

This means that the cosmological horizon is thermodynamically stable while the event horizon is unstab
equality sign (that is, zero specific heat) holds for the Nariai black hole. In the limit of� → ∞, we recover the
negative specific heat (CSch

v = −3Ss ) of the Schwarzschild black hole. On the other hand, in the limit of� → 0 one
finds a positive value ofCdS

v = 3S0 for the exact de Sitter space.

4. Topological de Sitter space

The topological de Sitter (TdS) solution was originally introduced to check the mass bound conjectur
Sitter space: any asymptotically de Sitter space with the mass greater than exact de Sitter space has a cos
singularity [14]. For our purpose, we consider the topological de Sitter solution in five-dimensional spaceti

(16)ds2
TdS= −h(r) dt2 + 1

h(r)
dr2 + r2[dχ2 + fk(χ)2

(
dθ2 + sin2 θ dφ2)],

wherek = 0,±1.h(r) andfk(χ) are given by

(17)h(r) = k + m

r2 − r2

�2 , f0(χ) = χ, f1(χ) = sinχ, f−1(χ) = sinhχ.

Requiringm > 0, the black hole disappears and instead a naked singularity occurs atr = 0. Here we define
k = 1,0,−1 cases as the Schwarzschild-topological de Sitter (STdS) space, flat-topological de Sitter (FTdS
and hyperbolic-topological de Sitter (HTdS) space, respectively. In the case ofk = 1,m = 0, we have an exac
de Sitter space with its curvature radius�. However,m > 0 generates the topological de Sitter spaces. The
cosmological horizon exists as

(18)r2
CH = �2

2

(
k +

√
k2 + 4m/�2

)
.

For k = −1 case we have both a small cosmological horizon (r2
CH � �2,4m � �2) with the horizon atr = rCH,

wherer2
CH � m and a large cosmological horizon (r2

CH � �2,4m � �2) with the horizon atr = rCH given by
r2
CH � √

m�. For k = 0 case, one has the cosmological horizon atr = rCH, wherer2
CH = √

m�. In the case of
k = 1, for 4m � �2 one has the cosmological horizon atr = rCH, wherer2

CH � �2 + m and for 4m� �2, one has
the cosmological horizon atr = rCH, wherer2

CH � √
m�. Here we haver2

CH > �2 for k = 1 case. This analysis i
useful to justify whether the specific heat of the cosmological horizon is or not positive.

The relevant thermodynamic quantities for the cosmological horizon are calculated as [11]

m = r2
CH

(
r2
CH

�2 − k

)
, F = − V3r

2
CH

16πG5

(
r2
CH

�2 + k

)
, S0 = V3r

3
CH

4G5
,

(19)TH = − k

2πrCH
+ rCH

π�2
, E = F + THS = 3V3m

16πG5
= M,

whereV3 is the volume of unit three-dimensional hypersurface. Using the above relations, one finds

(20)Cv = 3
2r2

CH − k�2

2r2
CH + k�2

S0.
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Here we have positive specific heats for STdS and FTdS spaces

(21)CSTdS
v > 0, CFTdS

v = 3S0 > 0, for anyrCH.

On the other hand one finds the positive specific heat for HTdS space,

(22)CHTdS
v > 0 whenr2

CH > �2/2.

We note that all results of the TdS solution can be recovered from the TAdS solution by replacingk by −k. This
relation will play an important role in understanding de Sitter space in terms of AdS solution.

5. Correction to entropy and Cardy–Verlinde formula

In this section we make corrections to the Bekenstein–Hawking entropy according to the formula of Eq.
the FAdS black hole and FTdS solution one findsCv = 3S0 without any approximation. However, other cas
(HAdS and SAdS black holes, CSdS, STdS and HTdS spaces) lead toCv � 3S0 when choosing large blac
holes (r2

EH � �2) and large cosmological horizons (r2
CH � �2). As far asCv � 3S0 is guaranteed, the logarithm

correction to the Bekenstein–Hawking entropy is given by

(23)STAdS,CSdS,TdS= S0 − 1

2
lnS0 + · · · .

Note that there is no correction to the SdS black hole horizon (ESdS):SESdS
EH = SESdS

0 . Thus we do not consider th
case for correction.

The holographic principle means that the number of degrees of freedom associated with the bulk grav
dynamics is determined by its boundary spacetime. The AdS/CFT correspondence represents a reali
this principle [15]. Further, for a strongly coupled CFT with its AdS dual, one obtains the Cardy–Ve
formula [16]. Indeed, this formula holds for various kinds of asymptotically AdS spacetimes including the
black holes [9]. Also this formula holds for a few of asymptotically de Sitter spacetimes including the
black hole and TdS spacetimes [11]. Hence it needs to correct the Cardy–Verlinde formula if possible.
purpose, we have to define thermodynamic quantities described by the boundary CFT through the A(d
correspondences [17]. The relation between the five-dimensional bulk and four-dimensional boundary qua
given byE4 = (�/R)E, T = (�/R)TH whereR satisfiesT > 1/R but one has the same entropy:S4 = S0. We note
that the boundary physics is described by the CFT-radiation matter with the equation of state:p = E4/3V3. Then a
logarithmic correction is being determined by the Casimir energy defined byEc = 3(E4 +pV3 − T S0). We obtain

(24)ETAdS
c = k

3�r2
EHV3

8πG5R
+ 3

2
T lnS0,

(25)ECSdS
c = −3�r2

CHV3

8πG5R
+ 3

2
T lnS0,

(26)ETdS
c = −k

3�r2
CHV3

8πG5R
+ 3

2
T lnS0.

Substituting this expression into the Cardy–Verlinde formula, one finds

(27)TAdS : 2πR

3
√|k|

√|Ec(2E4 − Ec)| � S0 + πR�T

2kr3
EH

(
r4
EH

�2
− kr2

EH

)
lnS0,

(28)CSdS: 2πR

3

√|Ec(2E4 − Ec)| � S0 − πR�T

2r3
CH

(
r4
CH

�2 + r2
CH

)
lnS0,
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(29)TdS: 2πR

3
√|k|

√|Ec(2E4 − Ec)| � S0 − πR�T

2kr3
CH

(
r4
CH

�2 + kr2
CH

)
lnS0.

All coefficients in front of lnS0 in the above equations are transformed as [10,13]

(30)
πR�T

2kr3
EH

(
r4
EH

�2 − kr2
EH

)
= (4E4 − Ec)(E4 − Ec)

2(2E4 − Ec)Ec

,

(31)−πR�T

2r3
CH

(
r4
CH

�2 + r2
CH

)
= (4E4 − Ec)(E4 − Ec)

2(2E4 − Ec)Ec

,

(32)−πR�T

2kr3
CH

(
r4
CH

�2 + kr2
CH

)
= (4E4 − Ec)(E4 −Ec)

2(2E4 − Ec)Ec

.

Finally we obtain the same corrected formula for the Cardy–Verlinde formula as

(33)S
TAdS,CSdS,TdS
CV � 2πR

3
√|k|

√|Ec(2E4 − Ec)| − (4E4 − 3Ec)E4

2(2E4 − Ec)Ec

ln

(
2πR

3
√|k|

√|Ec(2E4 − Ec)|
)
.

6. Discussion

First of all we summarize our result. As is shown in Table 1,Cv = 3S0 for FAdS and FTdS cases without a
approximation. Also we haveCv > 0 for HAdS, STdS and CSdS cases whereasCv > 0 if r2

EH/CH > �2/2 for

SAdS black holes and HTdS space. Note thatCESdS
v < 0 for the black hole in de Sitter space. However, choos

large black holes and large de Sitter spaces (Cv � 3S0) except ESdS case leads to the same corrected formula
the Bekenstein–Hawking entropy Eq. (23) and the Cardy–Verlinde formula Eq. (33).1 Concerning the A(dS)/CFT
correspondences, we remind that the boundary CFT energy (E4) should be positive in order for it to make sen
However, one finds from table thatECSdS

4 < 0 for the cosmological horizon of the SdS black hole. It suggests
the dS/CFT correspondence is not valid for this case. Also the Casimir energy (Ec) is related to the central charg
of the corresponding CFT. Hence, if it is negative, one may obtain the non-unitary CFT. In this sense, HAdS
and CSdS cases are problematic. Further we comment on the extension of this approach to the dynamic A
correspondence by introducing a moving domain wall in the bulk background (brane world cosmology). Al
there is no problem in the AdS-back hole background [19,20], there remains problem in interpreting the
energy density in compared with the static energy likeE4 in the de Sitter background [21].

Table 1
Summary of specific heats, boundary CFT energy and uncorrected Casimir energy for 5D TAdS black holes, TdS spaces and SdS b

Thermodynamical system Cv E4(Ec)

HAdS + +(−)

FAdS +(3S0) +(0)
SAdS + if r2

EH > �2/2 +(+)

STdS + +(−)

FTdS +(3S0) +(0)
HTdS + if r2

CH > �2/2 +(+)

ESdS − +(+)

CSdS + −(−)

1 Also a similarly corrected Cardy–Verlinde formula for the TNRdS space appeared in [18].
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Finally we wish to mention that through this work, we can derive all thermal properties of the topologi
Sitter (TdS) spaces from the topological anti-de Sitter (TAdS) black holes by replacingk by −k.
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