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Abstract

We calculate corrections to the Bekenstein—Hawking entropy formula for the five-dimensional topological AdS (TAdS)-black
holes and topological de Sitter (TdS) spaces due to thermal fluctuations. We can derive all thermal properties of the TdS spaces
from those of the TAdS black holes by replacingy —k. Also we obtain the same correction to the Cardy—Verlinde formula for
TAdS and TdS cases including the cosmological horizon of the Schwarzschild—de Sitter (SdS) black hole. Finally we discuss
the AdS/CFT and dS/CFT correspondences and their dynamic correspondences.

0 2003 Elsevier B.MOpen access under CC BY license.

1. Introduction

Recently there are several works which show that for a large class of black holes (AdS—Schwarzschild one),
the Bekenstein—Hawking entropy receives logarithmic corrections due to thermodynamic fluctuations [1-5]. The
corrected formula takes the form

1
S:SO—EInCU+~-~, (1)

whereC, is the specific heat of the given system at constant volumeSauiénotes the uncorrected Bekenstein—
Hawking entropy. Here an important point is that for Eqg. (1) to make safsehould be positive. However,

the d-dimensional Schwarzschild black hole which is asymptotically flat has a negative specific szq%f‘ef

—(d — 2)Sp [6]. This means that the Schwarzschild black hole is never in thermal equilibrium and it evaporates
according to the Hawking radiation. But the Schwarzschild black hole could be thermal equilibrium with a radiation

in a bounded box. This is because the black hole has a negative specific heat while the radiation has a positive one.
The two will be in thermal equilibrium if the box is bounded. The AdS—Schwarzschild black hole belongs to this
category. On the contrary, if the box is unbounded as the Schwarzschild black hole, the black hole evaporates
completely. Furthermore we note that a cosmological horizon in five-dimensional de Sitter space has a positive
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specific heat otﬂsz 3So. Hence we can use the Eqg. (1) to calculate the correction to the Bekenstein—Hawking
entropy of the cosmological horizon.

In this Letter, we find new five-dimensional AdS-black holes and de Sitter spaces which give us positive specific
heats and thus logarithmic corrections to the entropy are achieved. These are the topological AdS-black holes
and topological de Sitter spaces. For completeness, we study thermal properties of the Schwarzschild—de Sitter
black hole. Further we make corrections to the Cardy—Verlinde formula which is a higher-dimensional version
of the two-dimensional Cardy formula. This formula realizes the holography principle through the A(dS)/CFT
correspondences.

2. Topological AdS black holes

It is believed that black holes in asymptotically flat spacetime should have spherical horizon. When introducing
a negative cosmological constant, a black hole can have non-spherical horizon. We call this the topological black
hole [7]. The topological AdS black holes in five-dimensional spacetimes are given by

1 .
dséhys = —h(r)di® + mdrz +r2[dx% + fi(x)?(d6® + sirf6 d¢?)], )

wherek describes the horizon geometry with a constant curvati{ré.and fi (x) are given by

2

h<r>=k—;”—2+2—2, fo=x.  AG)=sinx,  f1(x)=sinhy. 3)

Here we defing = 1, 0, and—1 cases as the Schwarzschild—AdS (SAdS) black hole [8], flat-AdS (FAdS) black
hole, and hyperbolic-AdS (HAdS) black hole [9], respectively. In the case=efl, m = 0, we have an exact
AdSs-space with its curvature radidsHoweverm # 0 generates the topological AdS black holes. The only event
horizon is given by

réH=§<—k+,/k2+4m/Z2). (4)

Fork = 1, we have both a small black hal€?,, < ¢2, 4m < ¢?) with the horizon at = rgn, wherer2, ~m and
a large black holérg,, > £2, 4m > ¢2) with the horizon at = rgy given byr2,, ~ /m . Fork = 0 case, one has
the event horizon at= rgn, whererg,, = /m €. In the case ok = —1, for 4n < ¢2 one has the event horizon at
r = ren, WhererZ,, >~ ¢2 + m and for 4m>> ¢? one has the event horizonat rey given byrZ, ~ /m €. That
is, one always findséH > ¢2 for k = —1. This analysis is useful to justify whether the corresponding specific heat
is or not positive.

The relevant thermodynamic quantities: reduced majsf(ee energy £), Bekenstein—Hawking entropyq),
Hawking temperaturely), and energy (ADM massE = M) are given by [10]

2 2 2 3
2 (TEH Varéy (Tén Vargy
=y S k), F=—EH(EH ) so=EH
" rEH( Z3 ) 16nc;5< 2 ) 0= 4G5
k TEH 3Vam

Ty = = E=F +TuSo= =M, S
H ZJTI’EH+T[€2 + 10 167 Gs ©)

where V3 is the volume of unit three-dimensional hypersurface @gds the five-dimensional Newton constant.
Using the above together with, = (dE/dT)y, one finds

2rg + k2
EH So (6)

C,=3 :
ST, — ke?
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Here we obtain two positive specific heats for HAdS and FAdS black holes

chAdS. o, cPAS—35,>0, foranyren. (7
On the other hand one finds a condition for positive specific heat for SAdS black hole [8]

CSAIS- 0, for g, > €2)2. (8)

In the limit of £ — oo, we recover the negative specific heéﬂhz —38;s) of the Schwarzschild black hole. On
the other hand, in the limit of — 0 one finds a positive value @f’~° = 35, for the large SAdS-black hole.

3. Schwar zschild—de Sitter black hole

In order to find thermal property of a black hole in de Sitter space, we consider Schwarzschild—de Sitter (SdS)
black hole in five-dimensional spacetimes [11]

ds§gs=—h(r)di® + Wl) dr®+ r?[d x? + sir? x (d0% + sin? 0 d¢?) ], ©)
r
whereh(r) is given by

m r2

In the case ofn = 0, we have an exact de Sitter space with its curvature radib®wever,n £ 0 generates the
SdS black hole. Here we have two horizons. The cosmological and event horizons are given by

r(Z:H/EH=§<1:I:,/1—4m/Z2). (11)

We classify three cases: (1) 4mt2, (2) 4n > €2, (3) 4n < 2. The case of & = ¢2 corresponds to the maximum
black hole and the minimum cosmological horizon in asymptotically de Sitter space (that is, Nariai black hole). In
this case we haveg,, = r3,, = £2/2=2m. The case of # > ¢2 is not allowed for the black hole in de Sitter space.
The case of 4 < ¢2 corresponds to a small black hole within the cosmological horizon. In this case we have the
cosmological horizon at= rcn, wherer2,, ~ ¢? — m and the event horizon at= ey given byrZ,, ~ m. Hence

we have two relations for the SdS solution:

m<rgg <72, 022<rd < —m (12)

which means that as increases from a small value to the maximunwof= ¢2/4, a small black hole increases up
to the Nariai black hole. On the other hand the cosmological horizon decreases from the maxitétim af) to
the minimum of¢2/2.

The relevant thermodynamic quantities for two horizons are given by [12,13]

2 2 3
7, V3r r2 V3r
2 EH/CH EH/CH [ TEH EH/CH

— - = 1 s F = :ti —_— l N S = )
" rEH/CH( iz ) BH/CH = = 167G ( Iz ) 4Gs

EH/CH 1 FEH/CH EH/CH 3Vam
T, == , E = F + T So==+ , 13

H 2rremcH - e ER/CHT TH °” T 16nGs )

whereVs is the volume of unit three-dimensional sphere. Using the above relations, one finds

2r2 —¢2
CER/CH 3 ZHER . (14)
2rgpcn ¢
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Making use of Eq. (12), one finds negative specific heat for the event horizon of the SdS black hole (ESdS) and
positive specific heat for the cosmological horizon (CSdS)

CESIS< o, cCS9S> 0, foranyrep. (15)

This means that the cosmological horizon is thermodynamically stable while the event horizon is unstable. The
equality sign (that is, zero specific heat) holds for the Nariai black hole. In the lirfit-efoco, we recover the
negative specific heaCéChz —38;) of the Schwarzschild black hole. On the other hand, in the limit-ef 0 one

finds a positive value 0@35 = 35y for the exact de Sitter space.

4. Topological de Sitter space

The topological de Sitter (TdS) solution was originally introduced to check the mass bound conjecture in de
Sitter space: any asymptotically de Sitter space with the mass greater than exact de Sitter space has a cosmologice
singularity [14]. For our purpose, we consider the topological de Sitter solution in five-dimensional spacetimes

dsfgs=—h(r)di*+ er)drz +r2[dx® + fi(0)?(d6% + sin? 0 d¢?)], (16)

wherek =0, +1. A(r) and fx(x) are given by

2
h<r>=k+;”—2—;—2, fooo=x, A =sinx,  fo1(x)=sinhy. (17)

Requiringm > 0, the black hole disappears and instead a naked singularity occurs: & Here we define

k =1,0, —1 cases as the Schwarzschild-topological de Sitter (STdS) space, flat-topological de Sitter (FTdS) space,
and hyperbolic-topological de Sitter (HTdS) space, respectively. In the cdse-df m = 0, we have an exact

de Sitter space with its curvature radiisHowever,n > 0 generates the topological de Sitter spaces. The only
cosmological horizon exists as

réH=§<k+,/k2+4m/€2>. (18)

Fork = —1 case we have both a small cosmological horiz@p' & €2, 4m < €2) with the horizon at = rcy,
whereréH ~ m and a large cosmological horizonég > 02, 4m > ¢?) with the horizon atr = rcy given by
r(Z:H ~ /m (. Fork = 0 case, one has the cosmological horizom at rcy, whereréH = /m¢. In the case of
k =1, for 4n <« €2 one has the cosmological horizonvat rcy, wherer2,, >~ ¢2 + m and for 4m>> ¢2, one has

the cosmological horizon at= rcp, whereréH ~ /mt. Here we haveéH > (2 for k = 1 case. This analysis is
useful to justify whether the specific heat of the cosmological horizon is or not positive.
The relevant thermodynamic quantities for the cosmological horizon are calculated as [11]

2 2 2 3
2 ('cH Varcu (7cn Varcn
— 2. (CH k), F=—_2CH(TCH 4 gy— 2CH
" rCH( Iz ) 1671G5<£2 + ) 0= 4G
k 3v.
Ty = e B FiTes= 2" oy, (19)

167Gs
whereVs is the volume of unit three-dimensional hypersurface. Using the above relations, one finds

2nrcH  wl?’

2 2
2r&y — ke

Cy=3—7"—_09,.
! ZréH—i-kZZ 0

(20)
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Here we have positive specific heats for STdS and FTdS spaces

cSTS~ 0,  CFT9S=35,>0, foranyrch. (21)
On the other hand one finds the positive specific heat for HTdS space,
chTdS~ 0 whenrd,, > €2/2. (22)

We note that all results of the TdS solution can be recovered from the TAdS solution by re@dningk. This
relation will play an important role in understanding de Sitter space in terms of AdS solution.

5. Correction to entropy and Cardy—Verlinde formula

In this section we make corrections to the Bekenstein—Hawking entropy according to the formula of Eqg. (1). For
the FAdS black hole and FTdS solution one finds= 3Sp without any approximation. However, other cases
(HAdS and SAdS black holes, CSdS, STdS and HTdS spaces) ledd 1035y when choosing large black
holes (réH > ¢2) and large cosmological horizomég > 2). As far asC, ~ 3Sp is guaranteed, the logarithmic
correction to the Bekenstein—Hawking entropy is given by

1
STAGSCSASTdS _ g SInSo+ . (23)

Note that there is no correction to the SdS black hole horizon (ESESYS= S559S Thus we do not consider this
case for correction.

The holographic principle means that the number of degrees of freedom associated with the bulk gravitational
dynamics is determined by its boundary spacetime. The AdS/CFT correspondence represents a realization of
this principle [15]. Further, for a strongly coupled CFT with its AdS dual, one obtains the Cardy—\Verlinde
formula [16]. Indeed, this formula holds for various kinds of asymptotically AdS spacetimes including the TAdS
black holes [9]. Also this formula holds for a few of asymptotically de Sitter spacetimes including the SdS
black hole and TdS spacetimes [11]. Hence it needs to correct the Cardy—\Verlinde formula if possible. For this
purpose, we have to define thermodynamic quantities described by the boundary CFT through the A(dS)/CFT
correspondences [17]. The relation between the five-dimensional bulk and four-dimensional boundary quantities is
givenbyEs= (¢/R)E, T = ({/R)TH whereR satisfiesT > 1/R but one has the same entrogy:= Sp. We note
that the boundary physics is described by the CFT-radiation matter with the equation of staf®;/3V3. Then a
logarithmic correction is being determined by the Casimir energy definétl by3(E4 + pV3 — T So). We obtain

3r2. Vs 3
ETADS _ p“"EH ° 4 “Tn S, 24
¢ 87 Gs5R + 2 0 (24)

2
posas_ _3trcuVs | 3
CSdS_ _ZCH'S

=T In Sp, 25
87GsR 2 0 (25)
3¢rg Vs 3
EJIS— _p=_CcH ZTIn So. 26
¢ 87GsR 2 0 (26)
Substituting this expression into the Cardy—\Verlinde formula, one finds
27R TRLT (rE
TAAS: ——/|Ec(2E4— Eo)| >~ So+ ﬁ—ﬂ)lns, 27
Sm |Ec(2E4 ¢) 0 Zkl’éH ( 2 TEH 0 ( )
27R RET (18
CsdS Lo VIE.REs—Eo)l~ So— — (rC—ZH n réH) In So, (28)
3 ZrCH V4
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27R RCT (rd
TdS  ——/|E.(Ea— EJ)| =~ So— = (rc—”+kréH) In So. (29)

3VIk] 2%krd \ 02
All coefficients in front of InSp in the above equations are transformed as [10,13]

TRLT (rgy . 5 ) (4E4 — E.)(E4— E.)
—_— — k}" = 3 30
2krd,, ( Iz EH 2(2E4 — E.)E, (30)
_ TRLT (1 2\ _ (4Ea— Ee)(Ea— Eo) (31)
23, \ & M) 2QEs—EJE.
_TRLT (1 2\ _ (4Ea— Eo)(Eq— Eo) (32)
2@\ 2 TN 2QEs - E)E.
Finally we obtain the same corrected formula for the Cardy—Verlinde formula as
TAds.CsdsTds, . 27 R (4E4—3E.)Eq ( 27 R )
S ’ e E.(2E4— E.)| — E.(2E4— E.)| ). 33
cVv 3\/@ |Ec(2E4 o)l 2(2E4 — E.)E. Sm |Ec(2E4 o)l ( )
6. Discussion

First of all we summarize our result. As is shown in Tabl&€l = 35p for FAdS and FTdS cases without any
approximation. Also we hav€, > 0 for HAdS, STdS and CSdS cases wher€as-> 0O if réH/CH > £2/2 for

SAdS black holes and HTdS space. Note 89S < 0 for the black hole in de Sitter space. However, choosing
large black holes and large de Sitter spa&gsf 3Sp) except ESAS case leads to the same corrected formulae for
the Bekenstein—Hawking entropy Eq. (23) and the Cardy—Verlinde formula Eqt @&)cerning the A(dS)/CFT
correspondences, we remind that the boundary CFT enétgyshould be positive in order for it to make sense.
However, one finds from table thayS9S < 0 for the cosmological horizon of the SdS black hole. It suggests that
the dS/CFT correspondence is not valid for this case. Also the Casimir enérgig felated to the central charge

of the corresponding CFT. Hence, if it is negative, one may obtain the non-unitary CFT. In this sense, HAdS, STdS,
and CSdS cases are problematic. Further we comment on the extension of this approach to the dynamic A(dS)/CFT
correspondence by introducing a moving domain wall in the bulk background (brane world cosmology). Although
there is no problem in the AdS-back hole background [19,20], there remains problem in interpreting the cosmic
energy density in compared with the static energy lilein the de Sitter background [21].

Table 1

Summary of specific heats, boundary CFT energy and uncorrected Casimir energy for 5D TAdS black holes, TdS spaces and SdS black hole
Thermodynamical system Cy E4(Ec)
HAdS + +(=)
FAdS +(3S0) +(0)
SAdS +if rgy > 0272 +(+)
STdS + +(=)
FTdS +(3S0) +(0)
HTdS +if r3y, > €2/2 +(+)
ESdS - +(+)
Csds + —(=)

1 Also a similarly corrected Cardy—Verlinde formula for the TNRAS space appeared in [18].
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Finally we wish to mention that through this work, we can derive all thermal properties of the topological de
Sitter (TdS) spaces from the topological anti-de Sitter (TAdS) black holes by replabiye k.
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