46 research outputs found

    Preventive effects of garlic (Allium sativum) on oxidative stress and histopathology of cardiac tissue in streptozotocin-induced diabetic rats

    Get PDF
    Since some complications of diabetes mellitus may be caused or exacerbated by an oxidative stress, the protective effects of garlic (Allium sativum) were investigated in the blood and heart of streptozotocin-induced diabetic rats. Twenty-eight male Wistar rats were randomly divided into four groups: control, garlic, diabetic, and diabetic+garlic. Diabetes was induced by intraperitoneal (i.p.) injection of streptozotocin (50 mg/kg) in male rats. Rats were fed with raw fresh garlic homogenate (250 mg/kg) six days a week by gavage for a period of 6 weeks. At the end of the 6th week blood samples and heart tissues were collected and used for determination of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and histological evaluation. Induction of diabetes increased MDA levels in blood and homogenates of heart. In diabetic rats treated with garlic, MDA levels decreased in blood and heart homogenates. Treatment of diabetic rats with garlic increased SOD, GPX and CAT in blood and heart homogenates. Histopathological finding of the myocardial tissue confirmed a protective role for garlic in diabetic rats. Thus, the present study reveals that garlic may effectively modulate antioxidants status in the blood and heart of streptozotocin induced-diabetic rats

    In vitro activities of 28 antimicrobial agents against methicillin-resistant staphylococcus aureus (MRSA) from a clinical setting in Malaysia.

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA), an established nosocomial and emerging community pathogen associated with many fatalities due to its hyper-virulence and multiple drug resistant properties, is on the continuous rise. To update the current status on the susceptibility of local MRSA isolates to various classes of antibiotics and to identify the most potent antibiotics, thirty-two clinical isolates comprised of hospital acquired (HA) and community acquired (CA) infections were investigated by disk diffusion test. Of the 32 MRSA isolates, 14 (43.75%) and 18 (56.25%) were community and hospital acquired MRSA, respectively. All isolates were multiple drug resistant to more than 3 classes of antibiotics despite the source or specimen from which it was isolated. The oxacillin MICs for all isolates ranged from 2 to ≥ 256 μg/ml. Twenty-five of 26 erythromycin-resistant MRSA isolates exhibited an inducible MLSB resistance phenotype while one showed an MS phenotype. More than half the isolates (68.75%) were resistant to at least one of the six aminoglycosides tested, with netilmicin as the most susceptible. The most effective antistaphylococcal agents were linezolid, vancomycin, teicoplanin and quinupristin/dalfopristin exhibited 100% susceptibility. Since MRSA is under continuous pressure of acquiring multiple drug resistance, it is imperative to focus routine surveillance on HA and CA-MRSA strains to monitor and limit the spread of this organism

    A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements

    A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus

    Get PDF
    In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin (PVL) is an additional cause for concern. In order to provide an overview of pandemic, epidemic and sporadic strains, more than 3,000 clinical and veterinary isolates of MRSA mainly from Germany, the United Kingdom, Ireland, France, Malta, Abu Dhabi, Hong Kong, Australia, Trinidad & Tobago as well as some reference strains from the United States have been genotyped by DNA microarray analysis. This technique allowed the assignment of the MRSA isolates to 34 distinct lineages which can be clearly defined based on non-mobile genes. The results were in accordance with data from multilocus sequence typing. More than 100 different strains were distinguished based on affiliation to these lineages, SCCmec type and the presence or absence of PVL. These strains are described here mainly with regard to clinically relevant antimicrobial resistance- and virulence-associated markers, but also in relation to epidemiology and geographic distribution. The findings of the study show a high level of biodiversity among MRSA, especially among strains harbouring SCCmec IV and V elements. The data also indicate a high rate of genetic recombination in MRSA involving SCC elements, bacteriophages or other mobile genetic elements and large-scale chromosomal replacements

    Species-specific PCR for the diagnosis and determination of antibiotic susceptibilities of brucella strains Isolated from Tehran, Iran

    No full text
    Background: Brucellosis is an endemic zoonotic disease in the Middle East. This study intended to design a uniplex PCR assay for the detection and differentiation of Brucella at the species level and determining the antibiotic susceptibility pattern of Brucella in Iran. Methods: Sixty-eight Brucella specimens (38 animal and 30 human specimens) were analyzed using PCR (using one pair of primers). Antibiotic susceptibility patterns were evaluated and compared using the E-Test and disk diffusion susceptibility test. Tigecycline susceptibility pattern was compared with other antibiotics. Results: Thirty six isolates of B. melitensis, 2 isolates of B. abortus and 1 isolate of B. suis from the 38 animal specimens, 24 isolates of B. melitensis and 6 isolates of B. abortus from the 30 human specimens were differentiated. The MIC50 values of doxycycline for human and animal specimens were 125 and 10 μg/ml, respectively, tigecycline 0.064 μg/ml for human specimens and 0.125μg/ml for animal specimens, and trimethoprim/ sulfamethoxazole and ciprofloxacin 0.065 and 0.125μg/ml, respectively, for both human and animal specimens. The highest MIC50 value of streptomycin in the human specimens was 0.5μg/ml and 1μg/ml for the animal specimens. The greatest resistance shown was to tetracycline and gentamicin, respectively. Conclusion: Uniplex PCR for the detection and differentiation of Brucella at the strain level is faster and less expensive than multiplex PCR, and the antibiotics doxycycline, rifampin, trimethoprim-sulfamethoxazole, ciprofloxacin, and ofloxacin are the most effective antibiotics for treating brucellosis. Resistance to tigecycline is increasing, and we recommend that it be used in a combination regimen. © 2016, Iran J Pathol. All rights reserved
    corecore