7 research outputs found

    Hybrid solar-gas-electric dryer optimization with genetic algorithms

    Full text link
    [EN] To promote the hybrid solar dryers for use even under unfavorable weather and to overcome the intermittance state issue, the energy consumption should be optimized and the response time should be reduced. This work concerns a drying chamber connected to a solar absorber where the air can be heated also by combustion of gas and by electric resistance. To optimize the control parameters, an evolutionary optimization algorithm simulating natural selection was used. It was combined with a predictive model based on the artificial neural networks (ANN) technique and used as a fitness function for the genetic algorithm (GA). The ANN is a learning algorithm that needs training through a large dataset, which was collected using CFD simulation and experimental data. Then a GA was executed in order to optimize two objectives: The energy consumption and the t95% response time in which the drying chamber temperature reaches its set point (60°C). After optimization, a 30% decrease of the t95% response time, and 20% decrease of the energy consumption were obtained.This work was supported by the research institute IRESEN and all of the authors are grateful to the IRESEN for its cooperationEl Ferouali, H.; Gharafi, M.; Zoukit, A.; Doubabi, S.; Abdenouri, N. (2018). Hybrid solar-gas-electric dryer optimization with genetic algorithms. En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 363-370. https://doi.org/10.4995/IDS2018.2018.7521OCS36337

    Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation

    Get PDF
    WEST is an MA class superconducting, actively cooled, full tungsten (W) tokamak, designed to operate in long pulses up to 1000 s. In support of ITER operation and DEMO conceptual activities, key missions of WEST are: (i) qualification of high heat flux plasma-facing components in integrating both technological and physics aspects in relevant heat and particle exhaust conditions, particularly for the tungsten monoblocks foreseen in ITER divertor; (ii) integrated steady-state operation at high confinement, with a focus on power exhaust issues. During the phase 1 of operation (2017–2020), a set of actively cooled ITER-grade plasma facing unit prototypes was integrated into the inertially cooled W coated startup lower divertor. Up to 8.8 MW of RF power has been coupled to the plasma and divertor heat flux of up to 6 MW m−2 were reached. Long pulse operation was started, using the upper actively cooled divertor, with a discharge of about 1 min achieved. This paper gives an overview of the results achieved in phase 1. Perspectives for phase 2, operating with the full capability of the device with the complete ITER-grade actively cooled lower divertor, are also described

    Completion of JT-60SA construction and contribution to ITER

    No full text
    Construction of the JT-60SA tokamak was completed on schedule in March 2020. Manufacture and assembly of all the main tokamak components satisfied technical requirements, including dimensional accuracy and functional performances. Development of the plasma heating systems and diagnostics have also progressed, including the demonstration of the favourable electron cyclotron range of frequency (ECRF) transmission at multiple frequencies and the achievement of long sustainment of a high-energy intense negative ion beam. Development of all the tokamak operation control systems has been completed, together with an improved plasma equilibrium control scheme suitable for superconducting tokamaks including ITER. For preparation of the tokamak operation, plasma discharge scenarios have been established using this advanced equilibrium controller. Individual commissioning of the cryogenic system and the power supply system confirmed that these systems satisfy design requirements including operational schemes contributing directly to ITER, such as active control of heat load fluctuation of the cryoplant, which is essential for dynamic operation in superconducting tokamaks. The integrated commissioning (IC) is started by vacuum pumping of the vacuum vessel and cryostat, and then moved to cool-down of the tokamak and coil excitation tests. Transition to the super-conducting state was confirmed for all the TF, EF and CS coils. The TF coil current successfully reached 25.7 kA, which is the nominal operating current of the TF coil. For this nominal toroidal field of 2.25 T, ECRF was applied and an ECRF plasma was created. The IC was, however, suspended by an incident of over current of one of the superconducting equilibrium field coil and He leakage caused by insufficient voltage holding capability at a terminal joint of the coil. The unique importance of JT-60SA for H-mode and high-β steady-state plasma research has been confirmed using advanced integrated modellings. These experiences of assembly, IC and plasma operation of JT-60SA contribute to ITER risk mitigation and efficient implementation of ITER operation

    Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas

    No full text
    The stability with respect to a peelingballooning mode (PBM) was investigated numerically with extended MHD simulation codes in JET, JT-60U and future JT-60SA plasmas. The MINERVA-DI code was used to analyze the linear stability, including the effects of rotation and ion diamagnetic drift (w∗i), in JET-ILW and JT-60SA plasmas, and the JOREK code was used to simulate nonlinear dynamics with rotation, viscosity and resistivity in JT-60U plasmas. It was validated quantitatively that the ELM trigger condition in JET-ILW plasmas can be reasonably explained by taking into account both the rotation and w∗i effects in the numerical analysis. When deuterium poloidal rotation is evaluated based on neoclassical theory, an increase in the effective charge of plasma destabilizes the PBM because of an acceleration of rotation and a decrease in w∗i. The difference in the amount of ELM energy loss in JT-60U plasmas rotating in opposite directions was reproduced qualitatively with JOREK. By comparing the ELM affected areas with linear eigenfunctions, it was confirmed that the difference in the linear stability property, due not to the rotation direction but to the plasma density profile, is thought to be responsible for changing the ELM energy loss just after the ELM crash. A predictive study to determine the pedestal profiles in JT-60SA was performed by updating the EPED1 model to include the rotation and w∗i effects in the PBM stability analysis. It was shown that the plasma rotation predicted with the neoclassical toroidal viscosity degrades the pedestal performance by about 10% by destabilizing the PBM, but the pressure pedestal height will be high enough to achieve the target parameters required for the ITER-like shape inductive scenario in JT-60SA

    Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation

    Get PDF
    International audienceAbstract WEST is an MA class superconducting, actively cooled, full tungsten (W) tokamak, designed to operate in long pulses up to 1000 s. In support of ITER operation and DEMO conceptual activities, key missions of WEST are: (i) qualification of high heat flux plasma-facing components in integrating both technological and physics aspects in relevant heat and particle exhaust conditions, particularly for the tungsten monoblocks foreseen in ITER divertor; (ii) integrated steady-state operation at high confinement, with a focus on power exhaust issues. During the phase 1 of operation (2017–2020), a set of actively cooled ITER-grade plasma facing unit prototypes was integrated into the inertially cooled W coated startup lower divertor. Up to 8.8 MW of RF power has been coupled to the plasma and divertor heat flux of up to 6 MW m −2 were reached. Long pulse operation was started, using the upper actively cooled divertor, with a discharge of about 1 min achieved. This paper gives an overview of the results achieved in phase 1. Perspectives for phase 2, operating with the full capability of the device with the complete ITER-grade actively cooled lower divertor, are also described
    corecore