91 research outputs found

    Uncertainty quantification of gas production in the Barnett shale using time series analysis

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2015Deterministic methods for evaluating uncertainty in production forecasts for unconventional shale plays are either unreliable or time intensive. This thesis presents an improved methodology for quantifying uncertainty in production forecasts using Logistic Growth Analysis (LGA) and time series modeling. The applicability of the proposed method is tested by history matching production data and providing uncertainty bounds for forecasts from eight Barnett Shale counties. The 80% confidence interval (CI) generated by this method successfully bracketed true production values for all the counties, even when approximately one-third of the data was used for history matching. In the methodology presented, the trend in the production data was determined using two different non-linear regression schemes. The predicted trends were subtracted from the actual production data to generate two sets of stationary residual time series. Time series analysis techniques (Auto Regressive Moving Average models) were thereafter used to model and forecast residuals. These residual forecasts were incorporated with trend forecasts to generate our final 80% CI. To check the reliability of the proposed method, I tested it on 100 gas wells with at least 100 months of available production data. The CIs generated covered true production 84% and 92% of the time when 40 and 60 months of production data were used for history matching, respectively. An auto-regressive model of lag 1 best fit the residual time series in each case. The proposed methodology is an efficient way to generate production forecasts and to reliably estimate uncertainty for short to medium time periods. It includes uncertainty due to parameter estimation using two different regression schemes. It also incorporates the uncertainty due to the variance of the residuals. The method is computationally inexpensive and easy to implement. The utility of the procedure presented is not limited to gas wells; it can be applied to any type of well or group of related wells

    Crosslinked conventional size and nanoparticle size acrylic latexes and their blends: Investigation of the effects of crosslinking, particle size and distribution, glass transition temperature and blending on film formation, properties and morphology

    Get PDF
    Synthetic latexes have many product applications including functioning as a binder in paints and coatings. For many years, researchers in industry as well as in academe have been exploring various strategies to improve performance of acrylic latexes mainly to replace traditionally used solvent borne coatings due to increasing environmental concerns and strict governmental regulations. The main goal of the study is to investigate the effects of type (pre-coalescence or post-coalescence) and level of crosslinking, particle size (nano particle size ~ 20-25 nm vs. conventional particle size ~ 120-130 nm) and distribution, glass transition temperature (Tg), and blending on latex film formation process, properties and latex morphology. Films cast from these latexes were characterized using specific end use tests and fundamental properties using advanced instruments such as a dynamic mechanical analyzer (DMA), thermogravimetric analyzer (TGA), modulated differential scanning calorimeter (MDSC), nano-indenter, and atomic force microscope (AFM). The results showed significant improvements in acrylic latex performance proposing coatings near zero VOC and forming basis for exploring potential commercial applications of functional nanosize latexes and their blends

    Sum divisor cordial labeling in the context of graphs operations on bistar

    Get PDF
    A sum divisor cordial labeling of a graph G with vertex set V (G) is a bijection f : V (G) → {1, 2, 3, . . . , |V (G)|} such that an edge e = uv is assigned the label 1 if2|[f(u)+f(v)] and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. If a graph admits a sum divisor cordial labeling, then it is called sum divisor cordial graph. In this paper we prove that bistar Bm,n, splitting graph of bistar Bm,n, degree splitting graph of bistar Bm,n, shadow graph of bistar Bm,n, restricted square graph of bistar Bm,n, barycentric subdivision of bistar Bm,n and corona product of bistar Bm,n with K₁ admit sum divisor cordial labeling.Publisher's Versio

    Implementation Of An Improved Image Enhancement Algorithm On FPGA

    Get PDF
    Image processing plays very crucial role in this digital human world and has rapidly evolved with the development of computers, mathematics and the real-life demand of variety of applications in wide range of areas. This wide range of areas includes remote sensing, machine/ robot vision, pattern recognition, medical diagnosis, video processing, military, agriculture, television, etc. Image processing has two important components which are image enhancement and information extraction. Since image enhancement works at the front end with the initial raw inputs, it works like a backbone in image processing. When it comes to implementing these image enhancement techniques and developing applications, these tasks are bit demanding in the choice of processing units because the demand of high resolution. This emerges the necessity of a high speed, powerful and cost-effective processing unit. In this thesis we present an improved image enhancement algorithm in terms of performance and its implementation on FPGA as they satiates the necessity of high speed, powerful and cost-effective processing unit by providing flexibility, parallelization, pipelining and reconfigurability. We have performed a high level synthesis by using MATLAB and implemented an improved image enhancement algorithm on Cyclone V by using Quartus Prime. We have considered an X-ray image size of 1000x1920p for implementation and achieved decent PSNR values and hardware resource utilization along with the better visual interpretability by our proposed improvements. For achieving a better execution time and power consumption we also offer the task parallelism for the algorithm

    Badanie dezintegracji Deuteronu

    Get PDF

    Implementation of an Improved Image Enhancement Algorithm on FPGA

    Get PDF
    Image processing plays very crucial role in this digital human world and has rapidly evolved with the development of computers, mathematics and the real-life demand of variety of applications in wide range of areas. This wide range of areas includes remote sensing, machine/ robot vision, pattern recognition, medical diagnosis, video processing, military, agriculture, television, etc. Image processing has two important components which are image enhancement and information extraction. Since image enhancement works at the front end with the initial raw inputs, it works like a backbone in image processing. When it comes to implementing these image enhancement techniques and developing applications, these tasks are bit demanding in the choice of processing units because the demand of high resolution. This emerges the necessity of a high speed, powerful and cost-effective processing unit. In this thesis we present an improved image enhancement algorithm in terms of performance and its implementation on FPGA as they satiates the necessity of high speed, powerful and cost-effective processing unit by providing flexibility, parallelization, pipelining and reconfigurability. We have performed a high level synthesis by using MATLAB and implemented an improved image enhancement algorithm on Cyclone V by using Quartus Prime. We have considered an X-ray image size of 1000x1920p for implementation and achieved decent PSNR values and hardware resource utilization along with the better visual interpretability by our proposed improvements. For achieving a better execution time and power consumption we also offer the task parallelism for the algorithm

    Study of three-nucleon dynamics in the dp breakup collisions using the Wasa detector

    Get PDF
    An experiment to investigate the ^{1}H(d,pp)n breakup reaction using a deuteron beam of 300, 340, 380 and 400 MeV and the WASA detector has been performed at the Cooler Synchrotron COSY-Jülich. As a first step, the data collected at the beam energy of 340 MeV are analysed, with a focus on the proton–proton coincidences registered in the Forward Detector. Elastically scattered deuterons are used for precise determination of the luminosity. The main steps of the analysis, including energy calibration, particle identification (PID) and efficiency studies, and their impact on the final accuracy of the result, are discussed

    Study of three-nucleon dynamics in the dp breakup collisions using the Wasa detector

    Get PDF
    An experiment to investigate the ^{1}H(d,pp)n breakup reaction using a deuteron beam of 300, 340, 380 and 400 MeV and the WASA detector has been performed at the Cooler Synchrotron COSY-Jülich. As a first step, the data collected at the beam energy of 340 MeV are analysed, with a focus on the proton–proton coincidences registered in the Forward Detector. Elastically scattered deuterons are used for precise determination of the luminosity. The main steps of the analysis, including energy calibration, particle identification (PID) and efficiency studies, and their impact on the final accuracy of the result, are discussed

    Experimental study of three-nucleon dynamics in proton-deuteron breakup reaction

    Get PDF
    Proton–deuteron breakup reaction can serve as a tool to test stateof- the-art descriptions of nuclear interactions. At intermediate energies, below the threshold for pion production, comparison of the data with exact theoretical calculations is possible and subtle effects of the dynamics beyond the pairwise nucleon–nucleon interaction, namely the three-nucleon force (3NF), are significant. Beside 3NF, Coulomb interaction or relativistic effects are also important to precisely describe the differential cross section of the breakup reaction. The data analysis and preliminary results of the measurement of proton-induced deuteron breakup at the Cyclotron Center Bronowice, Institute of Nuclear Physics, Polish Academy of Sciences in Kraków are presented

    Experimental studies of the Coulomb force effects in deuteron-proton break-up reaction at medium energy regime

    Get PDF
    A set of differential cross-section data of the ^{1}H(d, pp)n breakup reaction at 130 and 160 MeV deuteron beam energies has been measured in the forward polar angles domain. The data were collected with the use of the Germanium Wall (FZ Jülich) and BINA (KVI Groningen) detectors. This part of the phase-space is special with respect to the dominant Coulomb force influence on the system dynamics. The data are compared with the theoretical calculations based on the Argonne V18 potential supplemented with the long-range electromagnetic component. The predictions also include the Urbana IX three nucleon force model. The strongest Coulomb effects are found in regions where the relative energy of the two protons is the smallest
    corecore