147 research outputs found

    Low temperature growth and electrical characterization of insulators for GaAs MISFETS

    Get PDF
    Progress in the low temperature growth of oxides and layers on GaAs and the detailed electrical characterization of these oxides is reported. A plasma anodization system was designed, assembled, and put into operation. A measurement system was assembled for determining capacitance and conductance as a function of gate voltage for frequencies in the range from 1 Hz to 1 MHz. Initial measurements were carried out in Si-SiO2 capacitors in order to test the system and in GaAs MIS capacitors abricated using liquid anodization

    Diffused P+-N solar cells in bulk GaAs

    Get PDF
    Recently melt grown GaAs, made by liquid encapsulation techniques, has become available. This material is of sufficiently good quality to allow the fabrication of solar cells by direct diffusion. Results obtained with p(+)/n junction solar cells made by zinc diffusion are described. The quality of bulk GaAs for this application is evaluated

    Encapsulated diffusion of sulphur into InP

    Get PDF
    This talk outlines a simple process for the fabrication of n(+)-p solar cells in indium phosphide. Large area cells (greater than 0.25 sq cm) have been made by this process, with a photovoltaic conversion efficiency of 15.21 percent under AM0 conditions of illumination. An ideality factor of 1.1 and a saturation current density of 8 x 10 to the minus 15th power A/sq cm have been observed for these cells. The technique for cell fabrication involves the diffusion of sulfur into InP by an open tube process, and gives highly reproducible results from run to run. A vacuum-deposited layer of gallium sulphide (Ga2S3) was used as the source for sulfur diffusion, with a chemically vapor deposited SiO2 cap layer to prevent decomposition of the InP surface during heat treatment. Diffusions were carried out in a flowing nitrogen ambient at 585 to 708 C, and characterized by their surface carrier concentration and the diffusion constant. The diffusion profile for sulfur in InP is estimated to be of the complementary error function type. The activation energy of the diffusion was estimated to be 1.94 eV. The technique described here is ideally suited for the fabrication of shallow n(+)-p junctions in InP, and has been used for space-borne solar cells

    Solar cells in bulk InP using an open tube diffusion process

    Get PDF
    A simple open tube diffusion technique for the fabrication of n+p junction solar cells is described. Large area (greater than 0.25 square cm) solar cells have been made by this process with a photovoltaic conversion efficiency of 15.2 percent under simulated AMO illumination. An ideality factor is 1.04 and a saturation current density of 9.6 times 10 to the minus 16th power A/square cm have been observed for these cells. These are the lowest (best) values reported to date for diffused structures in bulk InP

    Study in optimization of microcircuit design Final report

    Get PDF
    Optimization of microcircuit reliabilit

    Comparative performance of diffused junction indium phosphide solar cells

    Get PDF
    A comparison is made between indium phosphide solar cells whose p-n junctions were processed by open tube capped diffusion, and closed tube uncapped diffusion, of sulfur into Czochralski grown p-type substrates. Air mass zero, total area, efficiencies ranged from 10 to 14.2 percent, the latter value attributed to cells processed by capped diffusion. The radiation resistance of these latter cells was slightly better, under 1 MeV electron irradiation. However, rather than being process dependent, the difference in radiation resistance could be attributed to the effects of increased base dopant concentration. In agreement with previous results, both cells exhibited radiation resistance superior to that of gallium arsenide. The lowest temperature dependency of maximum power was exhibited by the cells prepared by open tube capped diffusion. Contrary to previous results, no correlation was found between open circuit voltage and the temperature dependency of Pmax. It was concluded that additional process optimization was necessary before concluding that one process was better than another

    Optimizing Low Temperature Diesel Combustion (LTC-D) "FreedomCAR and Vehicle Technologies Program Solicitation for University Research and Graduate Automotice Technology Education (GATE) Centers of Excellence"

    Get PDF
    The engine industry is currently facing severe emissions mandates. Pollutant emissions from mobile sources are a major source of concern. For example, US EPA mandates require emissions of particulate and nitrogen oxides (NOx) from heavy-duty diesel engine exhaust to drop at least 90 percent between 1998 and 2010. Effective analysis of the combustion process is required to guide the selection of technologies for future development since exhaust after-treatment solutions are not currently available that can meet the required emission reduction goals. The goal of this project is to develop methods to optimize and control Low Temperature Combustion Diesel technologies (LTC-D) that offers the potential of nearly eliminating engine NOx and particulate emissions at reduced cost over traditional methods by controlling pollutant emissions in-cylinder. The work was divided into 5 Tasks, featuring experimental and modeling components: 1.) Fundamental understanding of LTC-D and advanced model development, 2.) Experimental investigation of LTC-D combustion control concepts, 3.) Application of detailed models for optimization of LTC-D combustion and emissions, 4.) Impact of heat transfer and spray impingement on LTC-D combustion, and 5.) Transient engine control with mixed-mode combustion. As described in the final report (December 2008), outcomes from the research included providing guidelines to the engine and energy industries for achieving optimal low temperature combustion operation through using advanced fuel injection strategies, and the potential to extend low temperature operation through manipulation of fuel characteristics. In addition, recommendations were made for improved combustion chamber geometries that are matched to injection sprays and that minimize wall fuel films. The role of fuel-air mixing, fuel characteristics, fuel spray/wall impingement and heat transfer on LTC-D engine control were revealed. Methods were proposed for transient engine operation during load and speed changes to extend LTC-D engine operating limits, power density and fuel economy. Low emissions engine design concepts were proposed and evaluated

    Bis(N-picolinamido)cobalt(II) Complexes Display Antifungal Activity toward Candida albicans and Aspergillus fumigatus

    Get PDF
    This report highlights the synthesis and characterization of ten new bis(N-picolinamido)cobalt(II) complexes of the type [(L)2CoX2]0/2+, whereby L=N-picolinamide ligand and X=diisothiocyanato (−NCS), dichlorido (−Cl) or diaqua (−OH2) ligands. Single crystal X-ray (SC-XRD) analysis for nine of the structures are reported and confirm the picolinamide ligand is bound to the Co(II) center through a neutral N,O binding mode. With the addition of powder X-ray diffraction (PXRD), we have confirmed the cis and trans ligand arrangements of each complex. All complexes were screened against several fungal species and show increased antifungal activity. Notably, these complexes had significant activity against strains of Candida albicans and Aspergillus fumigatus, with several compounds exhibiting growth inhibition of >80 %, and onecompound inhibiting Aspergillus fumigatus hyphal growth by >90 %. Conversely, no antifungal activity was exhibited toward Cryptococcus neoformans and no cytotoxicity towards mammalian cell lines
    corecore