106 research outputs found
BRAHMS: Novel middleware for integrated systems computation
Biological computational modellers are becoming increasingly interested in building large, eclectic models, including components on many different computational substrates, both biological and non-biological. At the same time, the rise of the philosophy of embodied modelling is generating a need to deploy biological models as controllers for robots in real-world environments. Finally, robotics engineers are beginning to find value in seconding biomimetic control strategies for use on practical robots. Together with the ubiquitous desire to make good on past software development effort, these trends are throwing up new challenges of intellectual and technological integration (for example across scales, across disciplines, and even across time) - challenges that are unmet by existing software frameworks. Here, we outline these challenges in detail, and go on to describe a newly developed software framework, BRAHMS. that meets them. BRAHMS is a tool for integrating computational process modules into a viable, computable system: its generality and flexibility facilitate integration across barriers, such as those described above, in a coherent and effective way. We go on to describe several cases where BRAHMS has been successfully deployed in practical situations. We also show excellent performance in comparison with a monolithic development approach. Additional benefits of developing in the framework include source code self-documentation, automatic coarse-grained parallelisation, cross-language integration, data logging, performance monitoring, and will include dynamic load-balancing and 'pause and continue' execution. BRAHMS is built on the nascent, and similarly general purpose, model markup language, SystemML. This will, in future, also facilitate repeatability and accountability (same answers ten years from now), transparent automatic software distribution, and interfacing with other SystemML tools. (C) 2009 Elsevier Ltd. All rights reserved
Theory of Interaction of Memory Patterns in Layered Associative Networks
A synfire chain is a network that can generate repeated spike patterns with
millisecond precision. Although synfire chains with only one activity
propagation mode have been intensively analyzed with several neuron models,
those with several stable propagation modes have not been thoroughly
investigated. By using the leaky integrate-and-fire neuron model, we
constructed a layered associative network embedded with memory patterns. We
analyzed the network dynamics with the Fokker-Planck equation. First, we
addressed the stability of one memory pattern as a propagating spike volley. We
showed that memory patterns propagate as pulse packets. Second, we investigated
the activity when we activated two different memory patterns. Simultaneous
activation of two memory patterns with the same strength led the propagating
pattern to a mixed state. In contrast, when the activations had different
strengths, the pulse packet converged to a two-peak state. Finally, we studied
the effect of the preceding pulse packet on the following pulse packet. The
following pulse packet was modified from its original activated memory pattern,
and it converged to a two-peak state, mixed state or non-spike state depending
on the time interval
Sparse and Dense Encoding in Layered Associative Network of Spiking Neurons
A synfire chain is a simple neural network model which can propagate stable
synchronous spikes called a pulse packet and widely researched. However how
synfire chains coexist in one network remains to be elucidated. We have studied
the activity of a layered associative network of Leaky Integrate-and-Fire
neurons in which connection we embed memory patterns by the Hebbian Learning.
We analyzed their activity by the Fokker-Planck method. In our previous report,
when a half of neurons belongs to each memory pattern (memory pattern rate
), the temporal profiles of the network activity is split into
temporally clustered groups called sublattices under certain input conditions.
In this study, we show that when the network is sparsely connected (),
synchronous firings of the memory pattern are promoted. On the contrary, the
densely connected network () inhibit synchronous firings. The sparseness
and denseness also effect the basin of attraction and the storage capacity of
the embedded memory patterns. We show that the sparsely(densely) connected
networks enlarge(shrink) the basion of attraction and increase(decrease) the
storage capacity
Signal Propagation in Feedforward Neuronal Networks with Unreliable Synapses
In this paper, we systematically investigate both the synfire propagation and
firing rate propagation in feedforward neuronal network coupled in an
all-to-all fashion. In contrast to most earlier work, where only reliable
synaptic connections are considered, we mainly examine the effects of
unreliable synapses on both types of neural activity propagation in this work.
We first study networks composed of purely excitatory neurons. Our results show
that both the successful transmission probability and excitatory synaptic
strength largely influence the propagation of these two types of neural
activities, and better tuning of these synaptic parameters makes the considered
network support stable signal propagation. It is also found that noise has
significant but different impacts on these two types of propagation. The
additive Gaussian white noise has the tendency to reduce the precision of the
synfire activity, whereas noise with appropriate intensity can enhance the
performance of firing rate propagation. Further simulations indicate that the
propagation dynamics of the considered neuronal network is not simply
determined by the average amount of received neurotransmitter for each neuron
in a time instant, but also largely influenced by the stochastic effect of
neurotransmitter release. Second, we compare our results with those obtained in
corresponding feedforward neuronal networks connected with reliable synapses
but in a random coupling fashion. We confirm that some differences can be
observed in these two different feedforward neuronal network models. Finally,
we study the signal propagation in feedforward neuronal networks consisting of
both excitatory and inhibitory neurons, and demonstrate that inhibition also
plays an important role in signal propagation in the considered networks.Comment: 33pages, 16 figures; Journal of Computational Neuroscience
(published
The frequency of transforming growth factor-TGF-B gene polymorphisms in a normal southern Iranian population
Several single nucleotide polymorphisms (SNPs) of the transforming growth factor-β1 gene (TGFB1) have been reported. Determination of TGFB1 SNPs allele frequencies in different ethnic groups is useful for both population genetic analyses and association studies with immunological diseases. In this study, five SNPs of TGFB1 were determined in 325 individuals from a normal southern Iranian population using polymerase chain reaction-restriction fragment length polymorphism method. This population was in Hardy-Weinberg equilibrium for these SNPs. Of the 12 constructed haplotypes, GTCGC and GCTGC were the most frequent in the normal southern Iranian population. Comparison of genotype and allele frequencies of TGFB SNPs between Iranian and other populations (meta-analysis) showed significant differences, and in this case the southern Iranian population seems genetically similar to Caucasoid populations. However, neighbour-joining tree using Nei's genetic distances based on TGF-β1 allele frequencies showed that southern Iranians are genetically far from people from the USA, Germany, UK, Denmark and the Czech Republic. In conclusion, this is the first report of the distribution of TGFB1 SNPs in an Iranian population and the results of this investigation may provide useful information for both population genetic and disease studies. © 2008 The Authors
A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems
In this paper we present a methodological framework that meets novel
requirements emerging from upcoming types of accelerated and highly
configurable neuromorphic hardware systems. We describe in detail a device with
45 million programmable and dynamic synapses that is currently under
development, and we sketch the conceptual challenges that arise from taking
this platform into operation. More specifically, we aim at the establishment of
this neuromorphic system as a flexible and neuroscientifically valuable
modeling tool that can be used by non-hardware-experts. We consider various
functional aspects to be crucial for this purpose, and we introduce a
consistent workflow with detailed descriptions of all involved modules that
implement the suggested steps: The integration of the hardware interface into
the simulator-independent model description language PyNN; a fully automated
translation between the PyNN domain and appropriate hardware configurations; an
executable specification of the future neuromorphic system that can be
seamlessly integrated into this biology-to-hardware mapping process as a test
bench for all software layers and possible hardware design modifications; an
evaluation scheme that deploys models from a dedicated benchmark library,
compares the results generated by virtual or prototype hardware devices with
reference software simulations and analyzes the differences. The integration of
these components into one hardware-software workflow provides an ecosystem for
ongoing preparative studies that support the hardware design process and
represents the basis for the maturity of the model-to-hardware mapping
software. The functionality and flexibility of the latter is proven with a
variety of experimental results
A Fokker-Planck formalism for diffusion with finite increments and absorbing boundaries
Gaussian white noise is frequently used to model fluctuations in physical
systems. In Fokker-Planck theory, this leads to a vanishing probability density
near the absorbing boundary of threshold models. Here we derive the boundary
condition for the stationary density of a first-order stochastic differential
equation for additive finite-grained Poisson noise and show that the response
properties of threshold units are qualitatively altered. Applied to the
integrate-and-fire neuron model, the response turns out to be instantaneous
rather than exhibiting low-pass characteristics, highly non-linear, and
asymmetric for excitation and inhibition. The novel mechanism is exhibited on
the network level and is a generic property of pulse-coupled systems of
threshold units.Comment: Consists of two parts: main article (3 figures) plus supplementary
text (3 extra figures
Implementing Rules with Aritificial Neurons
Rule based systems are an important class of computer languages. The brain, and more recently neuromorphic systems, is based on neurons. This paper describes a mechanism that converts a rule based system, specified by a user, to spiking neurons. The system can then be run in simulated neurons, producing the same output. The conversion is done making use of binary cell assemblies, and finite state automata. The binary cell assemblies, eventually implemented in neurons, implement the states. The rules are converted to a dictionary of facts, and simple finite state automata. This is then cached out to neurons. The neurons can be simulated on standard simulators, like NEST, or on neuromorphic hardware. Parallelism is a benefit of neural system, and rule based systems can take advantage of this parallelism. It is hoped that this work will support further exploration of parallel neural and rule based systems, and su
- …