20 research outputs found

    Tunable and processable shape memory composites based on degradable polymers

    Get PDF
    The authors acknowledge the funding provided by NSFC-DG-RTD Joint Scheme (Project No. 51361130034) and the RAPIDOS project under the European Union's 7th Framework Programme (Project No.604517)

    A drug eluting poly(trimethylene carbonate)/poly(lactic acid)-reinforced nanocomposite for the functional delivery of osteogenic molecules

    Get PDF
    The authors acknowledge the funding provided by NSFC-DG-RTD Joint Scheme (Project No 51361130034), the RAPIDOS project under the European Union’s seventh Framework Programme (Project No 604517), and Dr Christoph Sprecher for his technical expertise on ED

    A many-analysts approach to the relation between religiosity and well-being

    Get PDF
    The relation between religiosity and well-being is one of the most researched topics in the psychology of religion, yet the directionality and robustness of the effect remains debated. Here, we adopted a many-analysts approach to assess the robustness of this relation based on a new cross-cultural dataset (N=10,535 participants from 24 countries). We recruited 120 analysis teams to investigate (1) whether religious people self-report higher well-being, and (2) whether the relation between religiosity and self-reported well-being depends on perceived cultural norms of religion (i.e., whether it is considered normal and desirable to be religious in a given country). In a two-stage procedure, the teams first created an analysis plan and then executed their planned analysis on the data. For the first research question, all but 3 teams reported positive effect sizes with credible/confidence intervals excluding zero (median reported β=0.120). For the second research question, this was the case for 65% of the teams (median reported β=0.039). While most teams applied (multilevel) linear regression models, there was considerable variability in the choice of items used to construct the independent variables, the dependent variable, and the included covariates

    "Polymer-polymer composites for the design of strong and tough degradable biomaterials"

    Get PDF
    The authors acknowledge the funding provided by NSFC-DG-RTD Joint Scheme (Project No. 51361130034) and the RAPIDOS project under the European Union’s 7th Framework Programme (Project No.604517)

    A drug eluting poly(trimethylene carbonate)/poly(lactic acid)-reinforced nanocomposite for the functional delivery of osteogenic molecules

    No full text
    Xi Zhang,1,2 Mike A Geven,3 Xinluan Wang,4 Ling Qin,4 Dirk W Grijpma,3 Ton Peijs,1 David Eglin,5 Olivier Guillaume,5 Julien E Gautrot1,2 1School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, UK; 2Institute of Bioengineering, Queen Mary University of London, Mile End Road, London, UK; 3Department of Biomaterials Science and Technology, University of Twente, Enschede, the Netherlands; 4Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 5018057, China; 5AO Research Institute Davos, Davos, Switzerland Background: Poly(trimethylene carbonate) (PTMC) has wide biomedical applications in the field of tissue engineering, due to its biocompatibility and biodegradability features. Its common manufacturing involves photofabrication, such as stereolithography (SLA), which allows the fabrication of complex and controlled structures. Despite the great potential of SLA-fabricated scaffolds, very few examples of PTMC-based drug delivery systems fabricated using photofabrication can be found ascribed to light-triggered therapeutics instability, degradation, side reaction, binding to the macromers, etc. These concerns severely restrict the development of SLA-fabricated PTMC structures for drug delivery purposes. Methods: In this context, we propose here, as a proof of concept, to load a drug model (dexamethasone) into electrospun fibers of poly(lactic acid), and then to integrate these bioactive fibers into the photo-crosslinkable resin of PTMC to produce hybrid films. The hybrid films’ properties and drug release profile were characterized; its biological activity was investigated via bone marrow mesenchymal stem cells culture and differentiation assays. Results: The polymer/polymer hybrids exhibit improved properties compared with PTMC-only films, in terms of mechanical performance and drug protection from UV denaturation. We further validated that the dexamethasone preserved its biological activity even after photoreaction within the PTMC/poly(lactic acid) hybrid structures by investigating bone marrow mesenchymal stem cells proliferation and osteogenic differentiation. Conclusion: This study demonstrates the potential of polymer–polymer scaffolds to simultaneously reinforce the mechanical properties of soft matrices and to load sensitive drugs in scaffolds that can be fabricated via additive manufacturing. Keywords: fiber-reinforced composite, poly(trimethylene carbonate), photo-crosslinking, dexamethasone, osteogenic material
    corecore