10 research outputs found
Recommended from our members
Manufactured Home Energy Audit (MHEA)Users Manual (Version 7)
The Manufactured Home Energy Audit (MHEA) is a software tool that predicts manufactured home energy consumption and recommends weatherization retrofit measures. It was developed to assist local weatherization agencies working with the U.S. Department of Energy (DOE) Weatherization Assistance Program. Whether new or experienced, employed within or outside the Weatherization Assistance Program, all users can benefit from incorporating MHEA into their manufactured home weatherization programs. DOE anticipates that the state weatherization assistance programs that incorporate MHEA into their programs will find significant growth in the energy and cost savings achieved from manufactured home weatherization. The easy-to-use MHEA uses a relatively standard Windows graphical interface for entering simple inputs and provides understandable, usable results. The user enters information about the manufactured home construction, heating equipment, cooling equipment appliances, and weather site. MHEA then calculates annual energy consumption using a simplified building energy analysis technique. Weatherization retrofit measures are evaluated based on the predicted energy savings after installation of the measure, the measure cost, and the measure life. Finally, MHEA recommends retrofit measures that are energy and cost effective for the particular home being evaluated. MHEA evaluates each manufactured home individually and takes into account local weather conditions, retrofit measure costs, and fuel costs. The recommended package of weatherization retrofit measures is tailored to the home being evaluated. More traditional techniques apply the same package of retrofit measures to all manufactured homes, often the same set of measures that are installed into site-built homes. Effective manufactured home weatherization can be achieved only by installing measures developed specifically for manufactured homes. The unique manufactured home construction characteristics require that each of these measures is evaluated separately in order to devise a package of measures that will result in high energy and dollar savings. MHEA stands apart from other building energy analysis tools in many ways. Calculations incorporated into the computer code specifically address manufactured home heating and cooling load trends. The retrofit measures evaluated by MHEA are all applicable to manufactured homes. Help messages describe common manufactured home weatherization practices as well as provide hints on how to install retrofit measures. These and other features help make MHEA easy to use when evaluating energy consumption and the effects of weatherization retrofit measures for manufactured homes. The National Renewable Energy Laboratory originally developed MHEA for the U.S. Department of Energy Weatherization Assistance Program. Conversion to a Windows-based program with additional modifications has been performed by the Oak Ridge National Laboratory. Many energy consumption and economic calculations resemble those found in the Computerized Instrumented Residential Audit written by Lawrence Berkeley National Laboratory and the National Energy Audit written by Oak Ridge National Laboratory. The calculations are similar in structure but have been altered to more accurately represent a manufactured home's unique energy use characteristics. Most importantly, MHEA helps meet the DOE Weatherization Assistance Program goals to increase client comfort and use federal dollars wisely
Recommended from our members
Realization rates of the National Energy Audit
Engineering estimates of savings resulting from installation of energy conservation measures in homes are often greater than the savings actually realized. A brief review of prior studies of realization rates prefaces this study of rates from an engineering audit tool, NEAT, (developed for the Department of Energy`s Low-Income Weatherization Assistance Program) used in a New York state utility`s low-income program. Estimates of metered and predicted savings are compared for 49 homes taken from a data base of homes that participated in the first year of the utility`s program. Average realization rates ranging from 57% to 69% result, depending on the data quality. Detailed examinations of two houses using an alternate engineering method, the DOE-2 computer program (considered an industry standard), seem to indicate that the low realization rates mainly result from factors other than inaccuracies in the audit`s internal algorithms. Causes of the low realization rates are examined, showing that the strongest single factor linked to the low rates in this study is the use of secondary heating fuels that supplement the primary heating fuel. This study, like the other similar studies, concludes that engineering estimates are valuable tools in determining ranked lists of cost-effective weatherization measures, but may not be accurate substitutes for measured results in evaluating program performance
Recommended from our members
Field Test Evaluation of Conservation Retrofits of Low-Income, Single-Family Buildings in Wisconsin: Blower-Door-Directed Infiltration Reduction Procedure, Field Test Implementation and Results
A blower-door-directed infiltration retrofit procedure was field tested on 18 homes in south central Wisconsin. The procedure, developed by the Wisconsin Energy Conservation Corporation, includes recommended retrofit techniques as well as criteria for estimating the amount of cost-effective work to be performed on a house. A recommended expenditure level and target air leakage reduction, in air changes per hour at 50 Pascal (ACH50), are determined from the initial leakage rate measured. The procedure produced an average 16% reduction in air leakage rate. For the 7 houses recommended for retrofit, 89% of the targeted reductions were accomplished with 76% of the recommended expenditures. The average cost of retrofits per house was reduced by a factor of four compared with previous programs. The average payback period for recommended retrofits was 4.4 years, based on predicted energy savings computed from achieved air leakage reductions. Although exceptions occurred, the procedure's 8 ACH50 minimum initial leakage rate for advising retrofits to be performed appeared a good choice, based on cost-effective air leakage reduction. Houses with initial rates of 7 ACH50 or below consistently required substantially higher costs to achieve significant air leakage reductions. No statistically significant average annual energy savings was detected as a result of the infiltration retrofits. Average measured savings were -27 therm per year, indicating an increase in energy use, with a 90% confidence interval of 36 therm. Measured savings for individual houses varied widely in both positive and negative directions, indicating that factors not considered affected the results. Large individual confidence intervals indicate a need to increase the accuracy of such measurements as well as understand the factors which may cause such disparity. Recommendations for the procedure include more extensive training of retrofit crews, checks for minimum air exchange rates to insure air quality, and addition of the basic cost of determining the initial leakage rate to the recommended expenditure level. Recommendations for the field test of the procedure include increasing the number of houses in the sample, more timely examination of metered data to detect anomalies, and the monitoring of indoor air temperature. Though not appropriate in a field test of a procedure, further investigation into the effects of air leakage rate reductions on heating loads needs to be performed
Recommended from our members
Assessment of Weatherization Assistance Program Needs for Improved Residential Measure Selection Techniques
This report documents a study conducted by the Oak Ridge National Laboratory (ORNL) to evaluate the current measure selection techniques and needs of agencies within the Weatherization Assistance Program (WAP). The study precedes initiation of a project to revise and upgrade the current means of selecting energy conservation measures for low-income single- and multi-family housing and includes recommendations for the revision. Issues relevant to the formation of the revised audit procedures are discussed. Currently available audits are reviewed. No single- to multi-family audit program was found capable of fulfilling the currents needs of the WAP. Recommendations include the separate development of single- and multi-family audits. Addition of specific features to the single-family audit is recommended, including (1) measure ranking unique to each eligible house, (2) heating and cooling equipment measures, (3) cooling envelope measures, (4) means of determining the amount of infiltration work to be performed, (5) potential for customizing and simplifying to meet local needs, and (6) implementation on either a personal computer or as an alternate manual technique. A single-family audit development plan is proposed which includes examination of several existing programs as potential starting points. Recommendations related to the development of a WAP multi-family audit include examination of several existing private programs for possible use by state WAP agencies expressing the greatest need and further study of the DOE supported programs ASEAM and CIRA as possible starting points for a DOE procedure. Early identification of approved multi-family measures and their applicability to various building stock, equipment types, and fuels is also recommended
Recommended from our members
The National Energy Audit (NEAT) Engineering Manual (Version 6)
Government-funded weatherization assistance programs resulted from increased oil prices caused by the 1973 oil embargo. These programs were instituted to reduce US consumption of oil and help low-income families afford the increasing cost of heating their homes. In the summer of 1988, Oak Ridge National Laboratory (ORNL) began providing technical support to the Department of Energy (DOE) Weatherization Assistance Program (WAP). A preliminary study found no suitable means of cost-effectively selecting energy efficiency improvements (measures) for single-family homes that incorporated all the factors seen as beneficial in improving cost-effectiveness and usability. In mid-1989, ORNL was authorized to begin development of a computer-based measure selection technique. In November of 1992 a draft version of the program was made available to all WAP state directors for testing. The first production release, Version 4.3, was made available in october of 1993. The Department of Energy's Weatherization Assistance Program has continued funding improvements to the program increasing its user-friendliness and applicability. initial publication of this engineering manual coincides with availability of Version 6.1, November 1997, though algorithms described generally apply to all prior versions. Periodic updates of specific sections in the manual will permit maintaining a relevant document. This Engineering Manual delineates the assumptions used by NEAT in arriving at the measure recommendations based on the user's input of the building characteristics. Details of the actual data entry are available in the NEAT User's Manual (ORNL/Sub/91-SK078/1) and will not be discussed in this manual
Recommended from our members
Evaluation of the computerized utilities and energy monitoring and control system installed at the US Army, Europe, 222D Base Support Battalion, Baumholder, Germany
ORNL the utilities and energy monitoring and control systems (UEMCSs) installed at the 222D Base Support Battalion (BSB) at Baumholder, Germany. This evaluation relies on examination of existing data and information to determine the effectiveness of the UEMCSs. The Baumholder BSB consists of numerous installations located as far as 63 miles from the principal installation at Baumholder. Only five facilities within these installations currently have support from four essentially separate UEMCSs A Messner/Miles and two Honeywell systems, which combined have 4600 points serving 200 buildings, perform traditional UEMCS functions associated with district heating, while a Landis Gyr UEMCS is used exclusively for electrical demand limiting and exterior lighting control. Total energy consumption at the community has steadily decreased since 1986 because of the implementation of UEMCS and the conversion to district heat. However, lack of annual energy consumption data by individual installation makes direct association of energy reductions to the implementation of specific UEMCSs difficult. Engineering estimates predict approximately a 6% annual energy savings associated with the UEMCSs of DM 1.9 million. However, less than 40% of the total community building area is connected. Opportunities for additional savings are available through (1) expanded use of demand limiting, (2) increased memory for the older Honeywell system to allow extending its application at the Smith Barracks facility and facilities nearby, (3) use of available UEMCS equipment to shut off the domestic hot water circulation pumps at night, (4) extension of UEMCS control at the Neubruecke Hospital complex, and (5) installation and utilization of heating hot water and potable hot water leak detection equipment. A moderate effort to track energy consumption by facility should be undertaken and data transmission lines associated with the UEMCS inspected and repaired
Recommended from our members
Evaluation of the computerized utilities energy monitoring and control system installed at the US Military Community at Goeppingen, Germany
Under the provisions of an Interagency Agreement between the US Army and the Department of Energy, Martin Marietta Energy Systems, Inc., through the Oak Ridge National Laboratory, is evaluating the Utilities and Energy Monitoring and Control System (UEMCS) installed at the US Military Community Activity at Goeppingen, Germany. This evaluation relies on examination of existing data and information to determine the effectiveness of the UEMCS. The Goeppingen UEMCS is an integral part of a combined UEMCS/district heating system which includes the UEMCS at Schwaebisch Gmuend, Germany. The system was installed during 1985 and 1986. The UEMCS at Goeppingen and Schwaebisch Gmuend are both well designed, implemented, and maintained. The UEMCS is operated in a supervisory mode with distributed intelligence in local controllers. At present, the UEMCS is operated in a supervisory mode with distributed intelligence in local controllers. At present, the UEMCS at Schwaebisch Gmuend does not have a central computer, but requires only a dedicated phone line to couple with the one at Goeppingen. Though the conversion to district heat has produced the majority of energy savings, the UEMCS day/night setback program also contributes substantially, with additional savings from start/stop programs, such as seasonal switchover, and various temperature control programs. Further opportunities for savings exist in increasing monitoring and control of water usage and connecting the community's electrical network to the UEMCS, permitting demand limiting and increased power factor control