15 research outputs found

    Experimental and theoretical studies of supramolecular self-assembled materials with antimicrobial activity

    Get PDF
    En esta tesis se estudiaron materiales antimicrobianos basados en las nanoestructuras autoensambladas de péptidos anfifilos catiónicos. Los péptidos anfifilos (PAs) son moléculas formadas por una región hidrofóbica unida a una secuencia peptídica hidrofílica. Debido a estas características, se autoensamblan en solución formando agregados de distinta morfología (micelas esféricas, nanofibras y nanocintas planas). La región peptídica puede diseñarse de manera de presentar bioactividad, por lo que los PAs se han propuesto para diversas aplicaciones biomédicas en donde la morfología de las nanoestructuras suele jugar un rol importante. Los PAs catiónicos están formados por aminoácidos cargados positivamente como lisina o arginina. Usualmente presentan actividad antimicrobiana debido a que son disruptores de membrana, mecanismo que los hace menos susceptibles a la resistencia bacteriana que otros agentes antimicrobianos. En este trabajo de tesis, se estudió en forma teórica y experimental la morfología de los agregados de PAs catiónicos antimicrobianos formados por lisinas en función de las condiciones de la solución (como el pH y la fuerza iónica) y la estructura química. Se encontró que algunos PAs forman micelas a pH bajo y fibras largas a pH alto que pueden entrelazarse para formar geles. Basado en este comportamiento, se diseñó un método para electrodepositar hidrogeles antimicrobianos en superficies conductoras. Finalmente, se estudiaron los cambios morfológicos de fibras autoensambladas cuando estas son cargadas con aditivos no polares, con el objetivo de diseñar en el futuro geles de PAs cargados con antibióticos que combinen sinérgicamente la acción antibacteriana de los dos componentes.In this thesis, we studied antimicrobial materials based on the self-assembled nanostructures of cationic peptide amphiphiles. Peptide amphiphiles (PAs) are molecules formed by a hydrophobic region linked to a hydrophilic peptide sequence. Due to these characteristics, PAs self-assemble in solution to form aggregates with different morphologies (spherical micelles, nanofibers and nanoribbons). Since the peptide region can be designed to be bioactive, PAs have been proposed for several biomedical applications where the morphology of the nanostructures often plays a major role. Cationic PAs have positively charged amino acids, such as lysine or arginine. These PAs usually have antimicrobial activity due to their ability to disrupt the bacterial membrane. Because of this mechanism, bacteria are less prone to develop resistance to PAs than to other antimicrobial agents. In this thesis, we performed theoretical and experimental studies of the morphology of aggregates formed by antimicrobial cationic PAs with oligolysine headgroups as a function of the solution conditions (such as pH and ionic strength) and chemical structure. We found that some PAs form micelles at low pH and long fibers at high pH. The latter can entangle to form gels. Based on this behavior, we designed a method to electrodeposit antimicrobial hydrogels on conductive surfaces. Finally, we studied the morphological changes of self-assembled fibers when they are loaded with nonpolar additives. This study opens an avenue to design PA hydrogels loaded with antibiotics to synergistically combine the antibacterial activity of both components.Fil: Zaldivar, Gervasio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Lithium solvation in dimethyl sulfoxide-acetonitrile mixtures

    Get PDF
    We present molecular dynamics simulation results pertaining to the solvation of Li+ in dimethyl sulfoxide-acetonitrile binary mixtures. The results are potentially relevant in the design of Li-air batteries that rely on aprotic mixtures as solvent media. To analyze effects derived from differences in ionic size and charge sign, the solvation of Li+ is compared to the ones observed for infinitely diluted K+ and Cl− species, in similar solutions. At all compositions, the cations are preferentially solvated by dimethyl sulfoxide. Contrasting, the first solvation shell of Cl− shows a gradual modification in its composition, which varies linearly with the global concentrations of the two solvents in the mixtures. Moreover, the energetics of the solvation, described in terms of the corresponding solute-solvent coupling, presents a clear non-ideal concentration dependence. Similar nonlinear trends were found for the stabilization of different ionic species in solution, compared to the ones exhibited by their electrically neutral counterparts. These tendencies account for the characteristics of the free energy associated to the stabilization of Li+Cl−, contact-ion-pairs in these solutions. Ionic transport is also analyzed. Dynamical results show concentration trends similar to those recently obtained from direct experimental measurements.Fil: Semino, Rocio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Zaldivar, Gervasio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Calvo, Ernesto Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Laria, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica; Argentin

    Self-assembly of model short triblock amphiphiles in dilute solution

    Get PDF
    In this work, a molecular theory is used to study the self-assembly of short diblock and triblock amphiphiles, with head-tail and head-linker-tail structures, respectively. The theory was used to systematically explore the effects of the molecular architecture and the affinity of the solvent for the linker and tail blocks on the relative stability of the different nanostructures formed by the amphiphiles in dilute solution, which include spherical micelles, cylindrical fibers and planar lamellas. Moreover, the theory predicts that each of these nanostructures can adopt two different types of internal organization: (i) normal nanostructures with a core composed of tail segments and a corona composed of head segments, and (ii) nanostructures with a core formed by linker segments and a corona formed by tail and head segments. The theory predicts the occurrence of a transition from micelle to fiber to lamella when increasing the length of the tail or the linker blocks, which is in qualitative agreement with the geometric packing theory and with experiments in the literature. The theory also predicts a transition from micelle to fiber to lamella as the affinity of the solvent for the tail or linker block is decreased. This result is also in qualitative agreement with experiments in the literature but cannot be explained in terms of the geometric packing theory. The molecular theory provides an explanation for this result in terms of the competition between solvophobic attractions among segments in the core and steric repulsions between segments in the corona for the different types of self-assembled nanostructures.Fil: Zaldivar, Gervasio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Samad, M. B.. University of Nebraska; Estados UnidosFil: Conda Sheridan, Martin. University of Nebraska; Estados UnidosFil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin

    Self-Assembled Nanostructures of Peptide Amphiphiles: Charge Regulation by Size Regulation

    Get PDF
    Self-assembled nanostructures of peptide amphiphiles (PAs) with molecular structures C16K2 and C16K3 (where C indicates the number of carbon atoms in the alkyl chain and K is the lysine in the head group) were studied by a combination of theoretical modeling, transmission electron and atomic force microscopes, and acid-base titration experiments. The supramolecular morphology of the PAs (micelles, fibers, or lamellas) was dependent on the pH and ionic strength of the solution. Theoretical modeling was performed using a molecular theory that allows determining the equilibrium morphology, the size, and the charge of the soft nanoassemblies as a function of the molecular structure of the PA, and the pH and salt concentration of the solution. Theoretical predictions showed good agreement with experimental data for the pH-dependent morphology and size of the nanoassemblies and their apparent pKa's. Two interesting effects associated with charge regulation mechanisms were found: first, ionic strength plays a dual role in the modulation of the electrostatic interactions in the system, which leads to complex dependencies of the aggregation numbers with salt concentration; second, the aggregation number of the nanostructures decreases upon increasing the charge per PA. The second mechanism, charge regulation by size regulation, tunes the net charge of the assemblies to decrease the electrostatic repulsions. A remarkable consequence of this behavior is that adding an extra lysine residue to the charged region of the PAs can lead to an unexpected decrease in the total charge of the micelles.Fil: Zaldivar, Gervasio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Vemulapalli, Sridhar. University Of Nebraska Medical Center; Estados UnidosFil: Udumula, Venkatareddy. University Of Nebraska Medical Center; Estados UnidosFil: Conda Sheridan, Martin. University Of Nebraska Medical Center; Estados UnidosFil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin

    Conformal Electrodeposition of Antimicrobial Hydrogels Formed by Self-Assembled Peptide Amphiphiles

    Get PDF
    The colonization of biomedical surfaces by bacterial biofilms is concerning because these microorganisms display higher antimicrobial resistance in biofilms than in liquid cultures. Developing antimicrobial coatings that can be easily applied to medically-relevant complex-shaped objects, such as implants and surgical instruments, is an important and challenging research direction. This work reports the preparation of antibacterial surfaces via the electrodeposition of a conformal hydrogel of self-assembling cationic peptide-amphiphiles (PAs). Hydrogels of three PAs are electrodeposited: C16K2, C16K3, and C18K2, where Cn is an alkyl chain of n methylene groups and Km is an oligopeptide of m lysines. The processing variables (electrodeposition time, potential, pH, salt concentration, agitation) enable fine control of film thickness, demonstrating the flexibility of the method and allowing to unravel the mechanisms underlying electrodeposition. The electrochemically prepared hydrogels inhibit the growth of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa in agar plates, and prevent the formation of biofilms of Acinetobacter baumannii and P. aeruginosa and the formation of A. baumannii colonies in solid media. C16K2 and C16K3 hydrogels outperform the antimicrobial activity of those of C18K2 while maintaining good compatibility with human cells

    Realidades interculturales, miradas hacia el género y la educación

    Get PDF
    Este texto contribuye al análisis científico de varias áreas del conocimiento como la filosofía social, la patología, la educación para el cuidado del medio ambiente y la sustentabilidad que inciden en diversas unidades de aprendizaje de la Licenciatura en Educación para la Salud y de la Maestría en Sociología de la SaludLa presente obra, es la reunión de varias investigaciones que se han dado cita para construir un libro que representa el horizonte de autores y lectores en la pasión del dialogo. Se trata de experiencias de los observadores e interpretes de la realidad de los observadores e interpretes de la realidad social quienes se aventuraron a reunir las voces de los informantes que resguardan los secretos de sus comunidades acerca de su cultura, organización simbólica, y de sus practicas y rituales engarzados en la vida cotidiana

    Experimental and theoretical studies of supramolecular self-assembled materials with antimicrobial activity

    No full text
    En esta tesis se estudiaron materiales antimicrobianos basados en las nanoestructuras autoensambladas de péptidos anfifilos catiónicos. Los péptidos anfifilos (PAs) son moléculas formadas por una región hidrofóbica unida a una secuencia peptídica hidrofílica. Debido a estas características, se autoensamblan en solución formando agregados de distinta morfología (micelas esféricas, nanofibras y nanocintas planas). La región peptídica puede diseñarse de manera de presentar bioactividad, por lo que los PAs se han propuesto para diversas aplicaciones biomédicas en donde la morfología de las nanoestructuras suele jugar un rol importante. Los PAs catiónicos están formados por aminoácidos cargados positivamente como lisina o arginina. Usualmente presentan actividad antimicrobiana debido a que son disruptores de membrana, mecanismo que los hace menos susceptibles a la resistencia bacteriana que otros agentes antimicrobianos. En este trabajo de tesis, se estudió en forma teórica y experimental la morfología de los agregados de PAs catiónicos antimicrobianos formados por lisinas en función de las condiciones de la solución (como el pH y la fuerza iónica) y la estructura química. Se encontró que algunos PAs forman micelas a pH bajo y fibras largas a pH alto que pueden entrelazarse para formar geles. Basado en este comportamiento, se diseñó un método para electrodepositar hidrogeles antimicrobianos en superficies conductoras. Finalmente, se estudiaron los cambios morfológicos de fibras autoensambladas cuando estas son cargadas con aditivos no polares, con el objetivo de diseñar en el futuro geles de PAs cargados con antibióticos que combinen sinérgicamente la acción antibacteriana de los dos componentes.In this thesis, we studied antimicrobial materials based on the self-assembled nanostructures of cationic peptide amphiphiles. Peptide amphiphiles (PAs) are molecules formed by a hydrophobic region linked to a hydrophilic peptide sequence. Due to these characteristics, PAs self-assemble in solution to form aggregates with different morphologies (spherical micelles, nanofibers and nanoribbons). Since the peptide region can be designed to be bioactive, PAs have been proposed for several biomedical applications where the morphology of the nanostructures often plays a major role. Cationic PAs have positively charged amino acids, such as lysine or arginine. These PAs usually have antimicrobial activity due to their ability to disrupt the bacterial membrane. Because of this mechanism, bacteria are less prone to develop resistance to PAs than to other antimicrobial agents. In this thesis, we performed theoretical and experimental studies of the morphology of aggregates formed by antimicrobial cationic PAs with oligolysine headgroups as a function of the solution conditions (such as pH and ionic strength) and chemical structure. We found that some PAs form micelles at low pH and long fibers at high pH. The latter can entangle to form gels. Based on this behavior, we designed a method to electrodeposit antimicrobial hydrogels on conductive surfaces. Finally, we studied the morphological changes of self-assembled fibers when they are loaded with nonpolar additives. This study opens an avenue to design PA hydrogels loaded with antibiotics to synergistically combine the antibacterial activity of both components.Fil: Zaldivar, Gervasio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Layer-by-Layer Self-Assembly of Polymers with Pairing Interactions

    No full text
    A molecular theory is introduced to model the layer-by-layer self-assembly (LbL-SA) of polymers with pairing interactions. Our theory provides a general framework to describe nonelectrostatic LbL-SA as the pairing interactions generically describe the formation of bonds between two complementary chemical species, for example, hydrogen donor and acceptor in hydrogen-bonding-LbL or host and guest in host-guest-LbL. The theory predicts fundamental observations related to LbL-SA: (i) phase separation of a mixture of polymers with pairing interactions in bulk solution, (ii) linear increase in film thickness with the number of LbL adsorption steps, (iii) stoichiometry overcompensation after each adsorption step, and (iv) interpenetration of polymer layers. Importantly, this study shows that the minimal requirement for nonelectrostatic LbL is the competition of a pairing interaction and an excluded-volume repulsion. A simple analytical model based on this competition predicts the volume fraction of the layers in good agreement with the numerical predictions of the molecular theory.Fil: Zaldivar, Gervasio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentin

    Twisting of Charged Nanoribbons to Helicoids Driven by Electrostatics

    No full text
    Charged amphiphiles in solution usually self-assemble into flat nanoribbons that spontaneously twist into different shapes. The role of electrostatics in this process is still under strong debate. This work studies the electrostatic free energy of twisting a nanoribbon at the level of the nonlinear Poisson−Boltzmann approximation. It is shown that helicoid-shaped ribbons are more stable than flat ribbons, while other shapes under consideration (cylindrical helixes and bent ribbons) are always less stable than the flat ribbon. The unexpected electrostatics-driven twisting of the ribbon into a helicoid is ascribed to the increase in its perimeter with increasing degree of twisting, as charges near the edge of the ribbon are electrostatically more stable than those near its center. This argument successfully explains the effects of salt concentration and the width of the ribbon on the optimal twisting period and allows us to approximately describe the problem of ribbon twisting in terms of two dimensionless variables that combine the helicoid twisting period, the Debye length of the solution, and the width of the ribbon. The magnitude of the electrostatic twisting energy predicted by our calculations is comparable to that of restoring elastic forces for typical ribbons of self-assembled amphiphiles, which indicates that electrostatics plays an important role in determining the equilibrium shape of charged nanoribbons.Fil: Zaldivar, Gervasio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Conda Sheridan, Martin. University of Nebraska; Estados UnidosFil: Tagliazucchi, Mario Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin
    corecore